Implementasi Pengenalan Pola Suara Menggunakan Mel-Frequency Cepstrum Coefficients(MFCC) dan Adaptive Neuro-Fuzzy Inferense System(ANFIS) sebagai Kontrol Lampu Otomatis


Mada Sanjaya(1*), Zabidin Salleh(2)

(1) Bolabot Techno Robotic Institute, CV. Sanjaya Star Group, Bandung, INDONESIA, Indonesia
(2) Faculty of Science and Technology Universiti Malaysia Terengganu, Kuala Terengganu, MALAYSIA, Malaysia
(*) Corresponding Author

Abstract


Penelitian ini menggambarkan implementasi pengenalan pola suara untuk mengontrol nyala dan mati lampu AC secara otomatis. Metode pengenalan pola suara yang digunakan dalam penelitian ini adalah Mel-Frequency Cepstrum Coefficients (MFCC) dan Adaptive Neuro-Fuzzy Inferense System (ANFIS). Metode LPC digunakan untuk ekstraksi ciri sinyal suara dan ANFIS digunakan sebagai metode pembelajaran untuk pengenalan pola suara. Data latih yang digunakan pada proses pembelajaran ANFIS sebanyak 6 ciri. Pengujian sistem pengenalan pola suara dilakukan menggunakan data suara terlatih dan data suara tak terlatih. Hasil pengujian menunjukkan tingkat keberhasilan untuk data suara terlatih sebesar 98,57 % dan data tak terlatih sebesar 95,90%. Sistem pengenalan pola suara ini telah diaplikasikan dengan baik untuk menyalakan dan mematikan lampu AC berbasis mikrokontroler Arduino

References


N. Dave, “Feature Extraction Methods LPC , PLP and MFCC In Speech Recognition,” Int. J. Adv. Res. Eng. Technol., vol. 1, no. VI, pp. 1–5, 2013.

A. Vijayaraj and N. Velmurugan, “Limited Speech Recognition for Controlling Movement of Mobile Robot,” Int. J. Eng. Sci. Technol., vol. 2, no. 10, pp. 5275–5279, 2010.

A. Rizal, L. Anggraeni, and V. Suryani, “Pengenalan Suara Paru-Paru Normal Menggunakan LPC dan Jaringan Syaraf Tiruan Back-Propagation.” Proceeding EECCIS 2006.

S. Wijoyo, “Speech Recognition Using Linear Predictive Coding and Artificial Neural Network for Controlling Movement of Mobile Robot,” in Proceedings of 2011 International Conference on Information and Electronics Engineering (ICIEE 2011), 2011, pp. 28–29.

S. Wijoyo, “Speech Recognition Using Linear Predictive Coding and Artificial Neural Network for Controlling Movement of Mobile Robot,” 2011 Int. Conf. Inf. Electron. Eng., vol. 6, pp. 179–183, 2011.

Thiang and Wanto, “Speech Recognition Using LPC and HMM Applied for Controlling Movement of Mobile Robot,” in Seminar Nasional Teknologi Informasi 2010, 2010.

A. F. Permana, “Implementasi Hidden Markov Model Untuk Aplikasi Pengenalan Ucapan Sebagai Kendali Gerak Robot Mobil,” Institut Pertanian Bogor, 2011.

S. C. Joshi and A. N. Cheeran, “MATLAB Based Feature Extraction Using Mel Frequency Cepstrum Coefficients for Automatic Speech Recognition,” Int. J. Sci. Eng. Technol. Res., vol. 3, no. 6, pp. 1820–1823, 2014.

A. Mustofa, “Sistem Pengenalan Penutur dengan Metode Mel-Frequency Wrapping,” J. Tek. Elektro, vol. 7, no. 2, pp. 88–96, 2007.

L. R. Mehta and A. S. Dabhade, “Comparison Study of MFCC and LPC for Marathi Isolated Word,” Int. J. Adv. Res. Electr. Electron. Instrum. Eng., vol. 2, no. 6, pp. 2133–2139, 2013.

V. Tiwari, “MFCC and Its Applications in Speaker Recognition,” Int. J. Emerg. Technol., vol. 1, no. 1, pp. 19–22, 2010.

L. Latumakulita, C. E. J. C. Montolalu, P. B. Alami, and S. S. Buatan, “Sistem Pakar Pendiagnosa Penyakit Ginjal,” J. Ilm. Sains, vol. 11, no. 1, pp. 131–139, 2011.

A. P. Lestari, “Rancang Bangun Pengenalan Penyakit Darah Menggunakan Hidden Markov Model,” Universitas Indonesia, 2008.

P. K. Sharma, B. R. Lakshmikantha, and K. S. Sundar, “Real Time Control of DC Motor Drive Using Speech Recognition,” India Int. Conf. Power Electron. 2010, pp. 1–5, Jan. 2011.

P. D. Duy, V. D. Lung, N. Q. D. Trang, and N. C. Toan, “Speech Recognition on Robot Controller Implemented on FPGA,” J. Autom. Control Eng., vol. 1, no. 3, pp. 274–278, 2013.

M. Z. Ozdemircan, “Robot Control with Voice Command,” Yildiz Technical University, 2008.

S. D. Gosavi, U. P. Khot, and S. Shah, “Speech Recognition for Robotic Control,” Int. J. Eng. Res. Appl., vol. 3, no. 5, pp. 408–413, 2013.

A. S. Kumar, K. M. Rao, and A. B. Krishna, “Speech Recognition System For Controlling The Robot 1,” Int. J. Eng. Res. Technol., vol. 1, no. 7, pp. 1–8, 2012.

J. Norberto Pires, “Robot-by-Voice: Experiments on Commanding an Industrial Robot Using The Human Voice,” Ind. Robot An Int. J., vol. 32, no. 6, pp. 505–511, Dec. 2005.

N.-S. Pai, H.-J. Kuang, T.-Y. Chang, Y.-C. Kuo, and C.-Y. Lai, “Implementation of a Tour Guide Robot System Using RFID Technology and Viterbi Algorithm-Based HMM for Speech Recognition,” Math. Probl. Eng., vol. 2014, pp. 1–7, 2014.

N. Rai and B. Rai, “An ANN Based Mobile Robot Control Through Voice Command Recognition Using Nepali Language,” Int. J. Appl. Control. Electr. Electron. Eng., vol. 2, no. 4, pp. 13–22, 2014.

A. Kumar, P. Singh, A. Kumar, and S. K. P. P. Guide, “Speech Recognition Based Wheelchair Using Device Switching,” Int. J. Emerg. Technol. Adv. Eng., vol. 4, no. 2, pp. 391–393, 2014.

S. Kundu, S. Sahni, S. Kumar, and A. Kumar, “Voice based Control Signal Generation for Intelligent Patient Vehicle,” Int. J. Inf. Comput. Technol., vol. 4, no. 12, pp. 1229–1235, 2014.

O. A. Mohamad, R. T. Hameed, and N. Ţăpuş, “Access Control Using Biometrics Features with Arduino Galileo,” Int. J. Adv. Res. Comput. Sci. Softw. Eng., vol. 4, no. 8, pp. 134–141, 2014.

E. S. Gopi, Digital Speech Processing Using Matlab. New Delhi, India: Springer, 2014.

T. M. Diansyah and R. Aulia, “Speech Recognation Berbasis Jaringan Syaraf Tiruan Menggunakan Algoritma FFT ( Fast Fourier Transform ),” Snastikom, pp. 195–201, 2013.

R. Jang, C.-T. Sun, and E. Mizutani, “Neuro-Fuzzy and Soft Computing.” Prentice-Hall, Inc., 1997.

E. Ronando and M. Isa, “Pengenalan Ucapan Kata Sebagai Pengendali Metode Linear Predictive Coding – Neuro Fuzzy,” J. Sains dan Seni ITS, vol. 1, no. 1, pp. 51–56, 2012.


Refbacks