Diversity of the Cave-Dwelling Bat (Chiroptera) in the Ngobaran Coastal Area, Karst of Gunung Sewu

Tatag Bagus Putra Prakarsa(1*), Rizka Apriani Putri(2), Yunita Fera Rahmawati(3), Abdullah Dolah Dalee(4)

(1) Biology study program, Faculty of Mathematics and Natural Scinece, Universitas Negeri Yogyakarta. Jl. Colombo No 1. Yogykarta 55281, Indonesia
(2) Biology study program, Faculty of Mathematics and Natural Scinece, Universitas Negeri Yogyakarta. Jl. Colombo No 1. Yogykarta 55281, Indonesia
(3) Biology study program, Faculty of Mathematics and Natural Scinece, Universitas Negeri Yogyakarta. Jl. Colombo No 1. Yogykarta 55281, Indonesia
(4) cience, Technology, and Agriculture, Yala Rajabhat University. Tessaban 3Rd, Sateng Sub-district, Yala Capital Province, Yala, Thailand, Thailand
(*) Corresponding Author


Bats (Chiroptera) are divided into two suborders (Yinpterochiroptera and Yangochiroptera). More than 50% of species of bats use caves as their roosting sites. Thus, they play a crucial role in the cave ecosystem. For that reason, they also exist as keystone species in the karst area. Gunung Sewu is one of the karst areas in Indonesia that best exemplifies tropical karst. Furthermore, Gunung Sewu is still at risk of habitat loss despite being designated as a Geopark. This study aimed to understand the diversity of bats that live in caves in the karst region of Gunung Sewu, specifically in four caves near Ngobaran Beach between April and June 2020. A harp net and misnet placed at the cave’s entrance were used to capture bats for data collection. After they were captured, the bats were identified using Morphometry and the Shannon-Wiener index. Through another index, Margalef index, the bat diversity in the four cave habitats was expressed, with a discovery that there are many different species. Based on the Jaccard similarity index, bats were categorized again using cluster analysis and the unweighted pair-group method using arithmetic averages (UPGMA). A total of nine species across five families were identified. The diversity of existing species variety was also recognized by analyzing the composition of the four cavern inhabitants. The four cave ecosystems’ bat diversity was divided into three categories: moderate variety, low similarity, and high species diversity. Except for Cekelan 1 Cave and Gebyog Cave (P=0.015), other variations did not demonstrate a meaningful difference (P0.05). This demonstrates how different each ecosystem is. Therefore, they could be classified as potentially spoiled habitats, demanding additional conservation efforts.


Bat cave, biospeleology, Chiroptera, diversity, Gunung Sewu

Full Text:



Aguilar, J. & Waldien, D. L. (2021) . Hipposideros diadema. The IUCN Red List of Threatened Species 2021 e.T10128A22095445. DOI: 10.2305/IUCN.UK.2021-2.RLTS.10.1023/B:JOMM.0000047340.25620.89.

Brunnet, A. K. &. Mendellin, R. A. (2001). The Species-area Relationship in Bats Assemblages of Tropical Caves. Journal of Mammalog,. 82 (4), 1114-1122. DOI: 10.1644/1545-1542(2001)082< 1114:TSARIB>2.0.CO;2.

Cahyadi, A., Prabawa, B. A., Tivianton, T. A. & Nugraha, H. (2014). Ekologi Lingkungan Kawasan Karst Indonesia: Menjaga Asa Kelestarian Kawasan Karst Indonesia. Yogyakarta: Depublish.

Chase, J. M. & Leibold, M. A.(2003). Ecological Niches: Linking Classical and Contemporary Approaches. USA: University of Chicago Press.

Cleveland, C. J., Frank, J. D., Federico, P., Gomez, I., Hallam, T. G., Horn, J., Lopez, J., McCracken, G. F., Medellin, R. A., Moreno-V, A., Sansone, C., Westbrook, J. K. & Kunz, T .H. (2006). Economic Value Of The Pest Control Service Provided By Brazilian Free-Tailed Bat In South-Central Texas. Ecology and the Environment, 4, 238-243. DOI: 10.1890/1540-9295(2006)004 [0238:EVOTPC]2.0.CO;2

Foley, N. M., Thong, V. D., Soisook, P., Goodman, S. M., Armstrong, K. N., Jacobs, D. S., Puechmaille, S. & Teeling, E. C. (2015). How and Why Overcome The Impediments To Resolution: Lessons From Rhinolophid and Hipposiderid Bats. Molecular Biology and Evolution, 32(2), 313–333. DOI: 10.1093/molbev/msu329.

Hammer, O., Harper, D. A. T. & Ryan, P. D. (2001). Past: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica, 4(1), 1-9.

Haryono, E. & Day, M. J. (2004). Landform Differentiation Within The Gunung Kidul Kegelkarst, Java, Indonesia. Journal of Cave and Karst Studies, 66(2), 62-69.

Huang, J. C. C., Ariyanti, E. S., Rustiati, E. L., Daaras, K., Maryanto, I., Maharadatunkamsi, Meyner, N., Kingston, T. & Wiantoro, S. (2016). Kunci identifikasi kelelawar di Sumatera: dengan catatan hasil perjumpaan di kawasan Bukit Barisan Selatan. Retrived from http://www. seabcru.org/.

Hutcheon, J. M. & Garland, Jr, T. (2004). Are megabats big? J. Mammal. Evol. 11:257–277. DOI: 10.1023/B:JOMM.0000047340.25620.89.

IUCN Redlist. (2022). The IUCN Red List of Threatened Species. Version 1.3. Retrived from https://www.iucnredlist.org.

Jones G. & Teeling, E. C. (2006). The Evolution of Echolocation in Bats. Trends Ecol. Evol. 21, 149–156 10.1016/j.tree.2006.01.001. DOI: 10.1016/j.tree.2006.01.001.

Krebs. C. J. (1989). Ecological Methodology Second Edition. California: Addison Wesley Longman, Menlo Park, Calif.

Kunz, T .H. (2003). Censusing Bats : Challenges, Solutions, and Sampling Biases., In O’Shea TJ. and MA. Bogan (ed). Monitoring Trends in Bat Populations of the United States and Territories : Problems and Prospects. U. S. Geological Survei, Biological Resources Division, Information and Technology Report. USGS/BRD/ITR-2003-003. P. 9-16.

Maharadatunkamsi, Prakarsa, T. B. P. & Kurnianingsih. (2015). Struktur Komunitas Mamalia Di Cagar Alam Leuweung Sancang, Kabupaten Garut, Jawa Barat. Zoo Indonesia, 24(1), 51– 59. DOI: 10.52508/zi.v24i1.2331.

Maryanto, I., Maharadatunkamsi, Achmadi, A. S., Wiantoro, S., Sulistyadi, E., Yooneda, M., Suyanto, A. & Sugardjito J. (2019). Cecklist oh The Mammals of Indonesia. Bogor: Research Center for Biology, Indonesian Institute of Science (LIPI).

Odum, H. T. (1994). Ecological and General Systems: An Introduction to Systems Ecology. Niwot, CO: University Press of Colorado.

Ozbek, M. (2016). Epigean amphipod fauna of Gönen Stream (western Anatolia, Turkey), with the description of Gammarus gonensis sp. nov. Turkish Journal of Zoology, 40(3), 1 – 9. DOI: 10.3906/zoo-1507-30.

Prakarsa, T. B. P. & Kurnianingsih. (2015). Struktur Komunitas Mamalia Di Cagar Alam Leuweung Sancang, Kabupaten Garut, Jawa Barat. Zoo Indonesia, 24(1), 51– 59. DOI: 10.52508/zi.v24i1.2331.

Payne, J., Francis, C. M., Phillips, K. & Kartikasari, S. N. (2000). Panduan Lapangan Mamalia di Kalimantan, Sabah, Serawak, & Brunei Darussalam. Jakarta: Sabah Sociaty and Wild life Concervation.

Pocheville, A. (2015). The Ecological Niche: History and Recent Controversies. In Heams, Thomas; Huneman, Philippe; Lecointre, Guillaume; et al. (eds.). Handbook of Evolutionary Thinking in the Sciences. Dordrecht: Springer, 547–586. DOI: 10.1007/978-94-017-9014-7_26.

Prakarsa, T. B. P. (2013). Diversitas, karakteristik habitat roosting, dan Analisis Mangsa Alami Kelelawar Subordo Microchiroptera Penghuni Gua Di Kawasan Karst Tuban dan Karst Menoreh. Thesis, Fakultas Biologi Universitas Gadjah Mada, Yogyakarta.

Prakarsa, T. B. P., Kurniawan, I. D. & Putro, S. T. J. (2021). Biospeleologi Biodiversitas Gua, Potensi, dan Permasalahannya. Yogyakarta: Bintang Pustaka Madani.

Saimina, A. J., de Queljoe, E. & Lengkong, H. J. (2019). Deskripsi hematologi kelelawar di gunung Tangkoko berdasarkan pemeriksaan darah lengkap. Pharmacon, 8(3), 243-251. DOI: 10.35799/pha.8.2019.29388.

Sneath P. H. A. & Sokal, R. R. (1973). Numerical Taxonomy. San Francisco: Freeman.

Suyanto, A., (2001). Seri Panduan Lapangan: Kelelawar di Indonesia. Bogor: Pusat Penelitian dan Pengembangan Biologi-LIPI.

Tanalgoa, K. C., Taborac, J. A. G. & Hughesa, A. C. (2018). Bat Cave Vulnerability Index (BCVI): A Holistic Rapid Assessment Tool to Identify Priorities for Effective Cave Conservation in The Tropics. Ecological Indicators, 89, 852–860. DOI: 10.1016/j.ecolind.2017.11.064.

Teeling, E. C., Dool, S. & Springer, S. (2012). Phylogenies, Fossils and Functional Genes: The Evolution of Echolocation In Bats. Pp. 1–22 in Evolutionary history of bats: fossils, molecules, and morphology (G. F.Gunnell and N. B. Simmons, eds.). New York: Cambridge Univ. Press.

Unesco. (2021). Gunung Sewu Unesco Global Geopark (Indonesia). Retrived from http://www.unesco.org/new/en/natural-sciences/environment/earth-sciences/unesco-global-geoparks/list-of-unesco-global-geoparks/indonesia/gunung-sewu/.

Van-Beynen. (2011). Karst Management. Springer Science-Business Media B.V. Rertrived from https://link.springer.com/book/10.1007/978-94-007-1207-2.

Vaughan, T. A., Ryan, J. N. & Czaplewski, N. J. (2015). Mammalogy. 6th ed. Jones & Bartlett, Burlington, Massachusetts.

Wanger, T. C., Darras, K., Bumrungsri, S., Tscharntke, T. & Klein, A.M.. (2014). Bat Pest Control Contributes to Food Security in Thailand. Biol. Conserv. 171, 220e223. DOI: 10.1016/j.biocon.2014.01.030.

Wiantoro S. (2012). Diversity and Roosting Characteristic of Bats in Buni Ayu Cave, Sukabumi Limestone Area, West Java. Zoo Indonesia, 21 (1), 32-36.

Wijayanti, F., Solihin, D. D., Alikodra, H. S., & Maryanto, I. (2011). Eritrosit dan hemoglobin pada kelelawar gua di kawasan karst Gombong, Kebumen, Jawa Tengah. Jurnal Biologi Indonesia, 7(1), 89-98. DOI: 10.47349/07012011/89.

DOI: https://doi.org/10.15575/biodjati.v7i2.20163


  • There are currently no refbacks.

Copyright (c) 2022 Jurnal Biodjati

License URL: https://creativecommons.org/licenses/by-nc-nd/4.0/

Indexing By :



Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


View My Stats