An Extracellular Pectinase from ISH16 Bacteria Isolated Induced by Coffee Pulp Waste Substrate


Kahar Muzakhar(1*), Farah Salma Elida(2), Ramdhan Putrasetya(3), Siswoyo Siswoyo(4), Rudju Winarsa(5), Hidayat Teguh Wiyono(6)

(1) Biology Department, Faculty of Mathematic and Natural Sciences, Universitas Jember, Jl. Kalimantan 37, Jember, East Java, Indonesia, 68121, Indonesia
(2) Biology Department, Faculty of Mathematic and Natural Sciences, Universitas Jember, Jl. Kalimantan 37, Jember, East Java, Indonesia, 68121, Indonesia
(3) Biology Department, Faculty of Mathematic and Natural Sciences, Universitas Jember, Jl. Kalimantan 37, Jember, East Java, Indonesia, 68121, Indonesia
(4) Chemistry Department, Faculty of Mathematic and Natural Sciences, Universitas Jember, Jl. Kalimantan 37, Jember, East Java, 68121, Indonesia
(5) Biology Department, Faculty of Mathematic and Natural Sciences, Universitas Jember, Jl. Kalimantan 37, Jember, East Java, Indonesia, 68121, Indonesia
(6) Biology Department, Faculty of Mathematic and Natural Sciences, Universitas Jember, Jl. Kalimantan 37, Jember, East Java, Indonesia, 68121,  
(*) Corresponding Author

Abstract


An α-1,4-glycosidic bonds galactoses pectin, mainly composed of a D-galacturonic acid chain, are important biomaterial widely used in industries. Utilizing this material, a bioprocess, including the biocatalysis pectinase, is often needed. Pectinase production was optimized in 7 days SSF at 37°C, and the pectinase activities were daily measured by the method of Somogy-Nelson. The optimum pectinase production was 0.166 U/ml on the fourth day SSF. Purification using open column ion exchange chromatography DEAE cellulose DE-52 resulted in 1030.9 folds of pectinase purity with a yield of 25.9%. The enzyme was at optimal activity at pH six and attended stable in the pH range of 5.5-8, while optimal activity at a temperature of 50°C and was stable in the range of 30-45°C. The pectinase activity increased by 120% with the addition of 10 mM Mg2+, and 95% retained when 10 mM Ca2+ was added. The presence of 10 mM Na+, K+, and Fe2+ resulted in a slight effect of activity at 85%, 83%, and 78%. However, it was strongly inhibited by 10 mM Al3+ and retained 25%. Based on the results above, the microbial utilization of coffee pulp waste by ISH16 bacteria pectinolytic is one opportunity to produce valuable pectinase with low-cost production, so comprehensive examination in large-scale production is needed too. In this paper, all research detail steps were described.


Keywords


coffee pulp, ISH16 bacteria isolate, pectinase, purification, solid state fermentation

Full Text:

PDF

References


Adewusi, E. A., Moodley, N. & Steenkamp, V. (2010). Medicinal Plants with Cholinesterase Inhibitory Activity: A Review. African Journal of Biotechnology, 9(49), 8257-8276. DOI: 10.5897/AJB10.1129

Akinyemi, B. T., Buraimoh, O. M., Ogunrinde, O. O. & Amund, O. O. (2017). Pectinase Production by Bacillus megaterium, Bacillus bataviensis, and Paenibacillus sp . Isolated from Decomposing Wood Residues in the Lagos Lagoon. The Journal of Tropical Life Science, 7(3), 204–207. DOI: 10.11594/jtls.07.03.03.

Apolinar-Valiente, R., Romero-Cascales, I., López-Roca, J. M., Gómez-Plaza, E. & Ros-García, J. M. (2010). Application and Comparison of Four Selected Procedures for the Isolation of Cell-Wall Material From the Skin of Grapes CV. Monastrell. Analytica Chimica Acta, 660(1–2), 206–210. DOI: 10.1016/j.aca.2009.09.020.

Aslam, F., Ansari, A., Aman, A., Baloch, G., Nisar, G., Baloch, A. H. & Rehman, H. U. (2020). Production of Commercially Important Enzymes from Bacillus licheniformis KIBGE-IB3 Using Date Fruit Wastes as Substrate. Journal of Genetic Engineering and Biotechnology, 18(1), 1-7.. DOI: 10.1186/s43141-020-00060-8.

Azizah. (2019). Skrining Bakteri Selulolitik Dari Sistem Pencernaan Hypothenemus Hampei Ferr. dan Purifikasi Enzim Selulase yang Dihasilkan. Tesis, Jember: Universitas Jember.

Banu, A. R., Devi, M. K., Gnanaprabhal, G. R., Pradeep, B. V. & Palaniswamy, M. (2010). Penicillium chrysogenum. Journal of Science and Technology, 3(4), 377–381.

Bisswanger, H. 2014. Enzyme Assays. Perspectives in Science, 1(1–6), 41–55. DOI: 10.1016/j.pisc.2014.02.005.

Chanakya, H. N. & De Alwis, A. A. P. (2004). Environmental Issues and Management in Primary Coffee Processing. Process Safety and Environmental Protection, 82(4B), 291–300, DOI: 10.1205/095758204323162319.

De Vries, J. A. Voragen, A. G. J. Rombouts, F. M. & Pilnik, W. (1981). Extraction and Purification of Pectins From Alcohol Insoluble Solids from Ripe and Unripe Apples. Carbohydrate Polymers, 1(2), 117–127. DOI: 10.1016/0144-8617(81)90004-7.

Dewi, R. F. & Muzakhar, K. (2018). Purification and Characterization of Cellulase of Mold Isolated from Vermicomposting Process of Palm Oil Empty Fruit Bunches. Jurnal Biodjati, 3(1), 1-7, DOI: 10.15575/biodjati.v3i1.2292.

Duong-Ly, K. C. & Gabelli, S. B. (2014). Salting Out of Proteins Using Ammonium Sulfate Precipitation. In Methods in Enzymology (1st ed., Vol. 541). DOI: 10.1016/B978-0-12-420119-4.00007-0.

Fan, L., Soccol, A. T., Pandey, A. & Soccol, C. R. (2003). Cultivation of Pleurotus Mushroom on Brazilian Coffee Husk and Effects of Caffeine and Tannic Acid. Micologia Aplicada International, 15(1), 15–21.

Frómeta, R. A. R.,Sánchez, J. L., & García, J. M. R. (2020). Evaluation of Coffee Pulp as Substrate For Polygalacturonase Production In Solid State Fermentation. Emirates Journal of Food and Agriculture, 32(2), 117–124. DOI: 10.9755/ejfa.2020.v32.i2.2068.

Gophane, S. R., Khobragade, C. N. & Jayebhaye, S. G. (2016). Extracellular Pectinase Activity From Bacillus Cereus GC Subgroup A : Isolation, Production, Optimization and Partial Characterisation. Journal of Microbiology, Biotechnology and Food Sciences, 6(2), 767–772. DOI: 10.15414/jmbfs.2016.6.2.767-772.

Haile, M. & Kang, W. H. (2019). Isolation, Identification, and Characterization of Pectinolytic Yeasts for Starter Culture in Coffee Fermentation. Microorganisms, 7(10), 1–16. DOI: 10.3390/microorganisms7100401.

International Coffee Organization. (2021). Producción total por paises exportadores. Retrived from https://www.ico.org/ES/trade_statisticsc.asp.

Joshi, M., Nerurkar, M. & Adivarekar, R. (2015). Characterization, Kinetic, and Thermodynamic Studies of Marine Pectinase from Bacillus subtilis. Preparative Biochemistry and Biotechnology, 45(3), 205–220. DOI: 10.1080/10826068.2014.907181.

Kapoor, M., Beg, Q. K., Bhushan, B., Dadhich, K. S. & Hoondal, G. S. (2000). Production, Partial Purification and Characterization of A Thermo-Alkali Stable Xylanase from Bacillus sp. RPP-1. Peocess Biochemistry, 36(1), 467–473. DOI: 10.1016/S0032-9592(00)00238-7.

Kaur, S. J., and V. K. Gupta. 2017. Production of Pectinolytic Enzymes Pectinase and Pectin Lyase by Bacillus Subtilis Sav-21 In Solid State Fermentation. Annals of Microbiology, 67(4), 333–342. DOI: 10.1007/s13213-017-1264-4.

Kaur, S., Kaur, H. P., Prasad, Tb. & Bharti, B. (2016). Production and Optimization of Pectinase by Bacillus sp. Isolated from Vegetable Waste Soil. Indo American Journal of Pharmaceutical Research, 6(01), 4185–4190. DOI: 10.3390/molecules27134195.

Khofiya, Z. N., Winarsa, R. & Muzakhar, K. (2019). Hidrolis Kulit Buah Kopi Oleh Kapang Pestalotiopsis sp . VM 9 Serta Pemanfaatan Hidrolisatnya sebagai Medium Produksi Protein Sel Tunggal Saccharomyces cerevisiae ( Hydrolysis Coffea Pulp Using Extracelluler Enzymes of Pestalotiopsis sp . VM 9 and Utiliza. Berkala Sainstek, 7(1), 19–23. DOI: 10.19184/bst.v7i1.9682.

Li, M., Sun, X., Zhou, L., Wang, H., Li, D., Wang, S. & F. Lu. 2014. Purification of alkaline pectinase in engineering Bacillus subtilis. Lecture Notes in Electrical Engineering, 3(151), 1419–1430.

Murthy, P. S. & Madhava, M. N. (2012). Sustainable Management of Coffee Industry By-Products And Value Addition - A Review. Resources, Conservation and Recycling, 66, 45–58. DOI: 10.1016/j.resconrec.2012.06.005.

Nelson, N. (1944). A Photometric Adaptation of the Somogyi Method for the Determination of Glucose. Journal of Biological Chemistry, 153(2), 375–380. DOI: 10.1016/S0021-9258(18)71980-7.

Nooralabettu, K. (2014). Effective Anion Exchange Chromatographic Purification of Hepatopancreatic Alkaline Phosphatase of Red shrimp, Solenocera choprai. International Journal of Analytical Bio-Science, 2(2), 41–51.

Oumer, O. J. & Abate, D. (2017). Characterization of Pectinase from Bacillus subtilis Strain Btk 27 and its Potential Application in Removal of Mucilage from Coffee Beans. Enzyme Research, 2017, 1–7. DOI: 10.1155/2017/7686904.

Pandey, A. (1992). Recent Process Developments Fermentation in Solid-State. Process Biochemistry, 27, 109–117. DOI: 10.1016/0032-9592(92)80017-W.

Pandey, A. (2003). Solid-state fermentation. Biochemical Engineering Journal, 13, 81–84. DOI: 10.1016/S1369-703X(02)00121-3.

Rahman, M. S., Kim, Y. K., Khan, M. M., Lee, S. H., Choi, Y. H., Cho, S. S., Park, C. & Yoo, J. C. (2020). Purification and Identification of Novel Alkaline Pectinase Pns31 From Bacillus Subtilis Cbs31 and its Immobilization for Bioindustrial Applications. Korean Journal of Chemical Engineering, 37(11), 1942–1950. DOI: 10.1007/s11814-020-0648-5.

Reddy, C. A. (2007). Methods for General and Molecular Microbiology (3rd ed.). ASM Press.

Roy, K., Dey, S., Uddin, M. K., Barua, R. & Hossain, M. T. (2018). Extracellular Pectinase from a Novel Bacterium Chryseobacterium indologenes Strain SD and its Application in Fruit Juice Clarification. Enzyme Research, 1–7. DOI: 10.1155/2018/3859752.

Sadh, P. K., Duhan, S. & Duhan, J. S. (2018). Agro-industrial Wastes And Their Utilization Using Solid State Fermentation: A Review. Bioresources and Bioprocessing, 5(1), 1–15. DOI: 10.1186/s40643-017-0187-z.

Sella, S. R. B. R., Guizelini, B. P., de S. Vandenberghe, L. P., Medeiros, A. B. P. & Soccol, C. R. (2009). Lab-scale Production of Bacillus atrophaeus Spores by Solid State Fermentation in Different Types of Bioreactors. Brazilian Archives of Biology and Technology, 52, 159–170.

Šelo, G.,Planini, M., Tišma, M. & Buci, A. (2021). A Comprehensive Review on Valorization of Agro-Food Industrial Residues by Solid-State Fermentation. Foods, 10(927), 1–26. DOI: 10.3390/foods10050927.

Sheladiya, P., Kapadia, C., Prajapati, V., Enshasy, A. E. H., Abd Malek, R. , Marraiki, N., Zaghloul, N. S. S. & Sayyed, R. Z. (2022). Production, Statistical Optimization, and Functional Characterization of Alkali Stable Pectate Lyase of Paenibacillus lactis PKC5 for Use in Juice Clarification. Scientific Reports, 12(1), 1–16. DOI: 10.1038/s41598-022-11022-0.

Ubaidillah, S. & Muzakhar, M. (2019). Sugar-Rich Hydrolyzates from Coffee Pulp Waste Which Produced Under Solid State Fermentation by Pestalotiosis sp . VM9 and Aspergillus sp . VTM5 , and its Efficiency As Medium For Single Cell Protein Saccharomyces cerevisiae. 9th Annual Basic Science International Conference 2019 (BaSIC 2019), 546, 1–7. DOI: 10.1088/1757-899X/546/6/062033.

Urry, L. A., Michael, L. C., Steven, A. W., Peter, V. M., Jane, B. R. & Neil, A. C. (2017). Campbell Biology Eleventh edition. In Encephale (8th ed.). Pearson Education Inc.

Wasilah, U., Muzakhar, K. & Purwatiningsih. (2020). Cellulase, Pectinase, and Xylanase Production by Listeria Sp . ISH 16 Using Coffee Pulp Waste Medium. IPTEK Journal of Proceedings The 6th International Seminar on Science and Technology, 6, 354–359.




DOI: https://doi.org/10.15575/biodjati.v7i2.20279

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Jurnal Biodjati

License URL: https://creativecommons.org/licenses/by-nc-nd/4.0/

Indexing By :

      

      

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 

View My Stats