https://pramukajateng.or.id/ormas/
Molecular Profile of Cogongrass [Imperata cylindrica (L.) Raeusch] in Java Island Based on trnT(UGU)-trnL(UAA) IGS Sequences | Dwiati | Jurnal Biodjati

Molecular Profile of Cogongrass [Imperata cylindrica (L.) Raeusch] in Java Island Based on trnT(UGU)-trnL(UAA) IGS Sequences


Murni Dwiati(1*), Salma Auliya Rahmah(2), Agus Hery Susanto(3)

(1) Faculty of Biology, Universitas Jenderal Soedirman, Karangwangkal Purwokerto, Central Java, Indonesia, 5312, Indonesia
(2) Faculty of Biology, Universitas Jenderal Soedirman, Karangwangkal Purwokerto, Central Java, Indonesia, 5312, Indonesia
(3) Faculty of Biology, Universitas Jenderal Soedirman, Karangwangkal Purwokerto, Central Java, Indonesia, 5312, Indonesia
(*) Corresponding Author

Abstract


Cogongrass is one of the top ten problem-causing weeds in the world that is invasively spread over many tropical and subtropical regions, including Java Island, the Republic of Indonesia. The wide distribution is possibly related to their adaptability to almost all terrestrial habitats from various altitudes, which may lead to a high level of genetic variation.  This study aimed to assess the genetic variation and phylogenetic relationship of cogongrass in Java Island using an intergenic spacer (IGS) sequence in the cpDNA genome, i.e. trnT(UGU)-trnL(UAA), as the molecular marker of high mutation rate. Plant samples were collected randomly from five different sites on the island. These were subjected to total genomic DNA extraction. The DNAs obtained were then used as PCR templates to amplify trnT(UGU)-trnL(UAA) IGS using a pair of universal primers. The PCR products were sequenced for genetic analysis. It was shown that an extremely high genetic variation with respect to the haplotype diversity of cogongrass in Java Island was observed. Nevertheless, a very low nucleotide diversity was obtained revealing a considerably close genetic relationship among the samples. Anatomical data regarding stomata number and length were found to correspond to the high level of genetic variation, but it was not the case with the stomata index.


Keywords


Cogongrass, genetic diversity, Java Island, trnT(UGU)-trnL(UAA)IGS

Full Text:

PDF

References


Abdel-Hamid, A. M. E. (2020). Micromorphological and Genetic Molecular Variations in Some Taxa of Asteraceae and its Importance as Grazing Plants. Pakistan Journal of Botany, 52(4), 1379–1388. DOI: 10.30848/PJB2020-4(9).

Abeysinghe, P. D., Wijesinghe, K. G. G., Tachida, H., & Yoshda, T. (2009). Molecular Characterization of Cinnamon (Cinnamomum verum Presl) Accessions and Evaluation of Genetic Relatedness of Cinnamon Species in Sri Lanka based on trnL Intron Region, Intergenic Spacers Between trnT-trnL, trnL-trnF, trnH-psbA and Nuclear ITS. Research Journal of Agriculture and Biological Sciences, 5(6), 1079–1088.

Al-Ashkar, I., Alderfasi, A., Romdhane, W. Ben, Seleiman, M. F., El-Said, R. A., & Al-Doss, A. (2020). Morphological and Genetic Diversity within Salt Tolerance Detection in Eighteen Wheat Genotypes. Plants, 9(3), 1–21. DOI: 10.3390/plants9030287.

Badan Pusat Statistik. (2018). Luas dan Penyebaran Lahan Kritis Menurut Provinsi pada Tahun 2011-2018. Retrieved from https://www.bps.go.id/indicator/60/588/1/luas-lahan-kritis-menurut-provinsi-dan-tingkat-kekritisan-lahan.html [in Indonesian].

Burrell, A. M., Pepper, A. E., Hodnett, G., Goolsby, J. A., Overholt, W. A., Racelis, A. E., Diaz, R. & Klein, P. E. (2015). Exploring Origins, Invasion History and Genetic Diversity of Imperata cylindrica (L.) P. Beauv. (Cogongrass) in the United States Using Genotyping by Sequencing. Molecular Ecology, 24(9), 2177–2193. DOI: 10.1111/mec.13167.

Chen, H., Guo, A., Wang, J., Gao, J., Zhang, S., Zheng, J., Huang, X., Xi, J. & Yi, K. (2020). Evaluation of Genetic Diversity within Asparagus Germplasm Based on Morphological Traits and ISSR Markers. Physiology and Molecular Biology of Plants, 26(2), 305–315. DOI: 10.1007/s12298-019-00738-5.

Damayanti, I., Nurbambang, A. & Soeprobowati, T. R. (2021). Plant Diversity of Petungkriyono Forest of Dieng Plateau, Central Java, Indonesia. Biodiversitas, 22(8), 3497–3507. DOI: 10.13057/biodiv/d220849.

Dapar, M. L. G., Alejandro, G. J. D., Meve, U. & Liede-Schumann, S. (2020). Quantitative Ethnopharmacological Documentation and Molecular Confirmation of Medicinal Plants Used by the Manobo Tribe of Agusan del Sur, Philippines. Journal of Ethnobiology and Ethnomedicine, 16(1), 1-60. DOI: 10.1186/s13002-020-00363-7.

De Leon, T. B., Karn, E., Al-Khatib, K., Espino, L., Blank, T., Andaya, C. B., Andaya, V. C. & Brim-DeForest, W. (2019). Genetic Variation and Possible Origins of Weedy Rice Found in California. Ecology and Evolution, 9(10), 5835–5848. DOI: 10.1002/ece3.5167.

Doyle, J.J. & Doyle, J. (1990). Isolation of plant DNA from Fresh Tissue. Focus, 12(1), 13–15.

Enloe, S. F., Lucardi, R. D., Loewenstein, N. J. & Lauer, D. K. (2018). Response of Twelve Florida Cogongrass (Imperata cylindrica) Populations to Herbicide Treatment. Invasive Plant Science and Management, 11(2), 82–88. DOI: 10.1017/inp.2018.12.

Hakim, L. & Soemarno, M. (2017). Biodiversity Conservation, Community Development and Geotourism Development in Bromo-Tengger-Semeru-Arjuno Biosphere Reserve, East Java. Geojournal of Tourism and Geosites, 20(2), 220–230.

Hall, T. A. (1999). BIOEDIT: A User-Friendly Biological Sequence Alignment Editor and analysis program for Windows 95/98/ NT. Nucleic Acids Symposium Series, 41, 95–98.

Hamidavi, H., Eslami, S. V. & Jami-Al-Ahmadi, M. (2021). Effect of EnvironMental Factors on Rhizome Bud Germination and Shoot Emergence of Invasive Imperata cylindrica. Weed Research, 61(5), 375–384. DOI: 10.1111/wre.12495.

Iskandar, J., Iskandar, B. S. & Partasasmita, R. (2018). Review: The Impact of Social and Economic Change on Domesticated Plant Diversity with Special Reference to Wet Rice Field and Home-Garden Farming of West Java, Indonesia. Biodiversitas, 19(2), 565–577. DOI: 10.13057/biodiv/d190227.

Jang, Y. J., Park, B. K., Son, D. C. & Choi, B. H. (2022). Morphological and Molecular Evidence of the Hybrid Origin of Crepidiastrum × muratagenii in Korea. Korean Journal of Plant Taxonomy, 52(2), 85–96. DOI: 10.11110/kjpt.2022.52.2.85.

Kato-Noguchi, H. (2022). Allelopathy and Allelochemicals of Imperata cylindrica as an Invasive Plant Species. Plants, 11(19), 11–14. DOI: 10.3390/plants11192551.

Kilowasid, L. M. H., Hasmar, L. O. J., Afa, L. O., Sutariati, G. A. K., Namriah, & Rakian, T. C. (2021). Effect of Cogongrass (Imperata cylindrica L.) Root Extract on Earthworms, Arbuscular Mycorrhizae Fungi Spore, and Growth of Upland Rice (Oryza sativa L.) for Local Kambowa variety. IOP Conference Series: Earth and Environmental Science, 807(3). DOI: 10.1088/1755-1315/807/3/032034.

Kim, H. T., Kim, J. S., Lee, Y. M., Mun, J. H., & Kim, J. H. (2019). Molecular Markers for Phylogenetic Applications Derived from Comparative Plastome Analysis of Prunus species. Journal of Systematics and Evolution, 57(1), 15–22. https://doi.org/10.1111/jse.12453.

Liu, J., Rana, K., McKay, J., Xiong, Z., Yu, F., Mei, J. & Qian, W. (2021). Investigating Genetic Relationship of Brassica juncea with B. nigra Via Virtual Allopolyploidy and hexaploidy Strategy. Molecular Breeding, 41(1). DOI: 10.1007/s11032-020-01197-7.

Lucardi, R. D., Wallace, L. E. & Ervin, G. N. (2020). Patterns of Genetic Diversity in Highly Invasive Species: Cogongrass (Imperata cylindrica) Expansion in The Invaded Range of the Southern United States (US). Plants, 9(4). DOI: 10.3390/plants9040423.

MacDonald, G. E. (2004). Cogongrass (Imperata cylindrica L) - Biology, Ecology, and Management. Critical Reviews in Plant Sciences, 23(5), 367–380. DOI: 10.1080/07352680490505114.

Metusala, D., Fauziah, Lestari, D. A., Damaiyani, J., Mas’udah, S. & Setyawan, H. (2020). The Identification of Plant Reliefs in the Lalitavistara Story of Borobudur Temple, Central Java, Indonesia. Biodiversitas, 21(5), 2206–2215. DOI: 10.13057/biodiv/d210549.

Nomura, Y., Shimono, Y., Mizuno, N., Miyoshi, I., Iwakami, S., Sato, K. & Tominaga, T. (2022). Drastic Shift in Flowering Phenology of F1 Hybrids Causing Rapid Reproductive Isolation in Imperata cylindrica in Japan. Journal of Ecology, 110(7), 1548–1560. DOI: 10.1111/1365-2745.13890.

Nurfadilah, S., Hapsari, L. & Abywijaya, I. K. (2017). Species Richness, Conservation status, and Potential Uses of Plants in Segara Anakan area of Sempu Island, East Java, Indonesia. Biodiversitas, 18(4), 1568–1588. DOI: 10.13057/biodiv/d180436.

Radunzel-Davis, L. A. & Cronin, J. (2019). Cogongrass (Imperata cylindrica (L.) Beauv.) in Louisiana: Cause and Consequence. Dissertations and Theses, 29114239, 78. Retrived from https://www.proquest.com/dissertations-theses/cogongrass-imperata-cylindrica-l-beauv-louisiana/docview/2665132690/se-2?accountid=26642.

Roma-Burgos, N., San Sudo, M. P., Olsen, K. M., Werle, I. & Song, B. K. (2021). Weedy rice (Oryza spp.): What’s in A Name? Weed Science, 69(5), 505–513. DOI: 10.1017/wsc.2021.22.

Rusdy, M. (2020). Imperata cylindrica: reProduction, Dispersal, and Controls. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 15(38), 1-9. DOI: 10.1079/PAVSNNR202015038.

Sanger, F., Nicklen, S., & Coulson, A. R. (1977). DNA Sequencing with Chain-terminating Inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 74(12), 5463–5467. DOI: 10.1073/pnas.74.12.5463.

Skuza, L., Szućko, I., Filip, E. & Strzała, T. (2019). Genetic Diversity and Relationship Between Cultivated, Weedy and Wild Rye Species as Revealed by Chloroplast and Mitochondrial DNA Non-coding Regions Analysis. PLoS ONE, 14(2), 1–21. DOI; 10.1371/journal.pone.0213023.

Smith, L. M. (1989). Automated DNA Sequencing and the Analysis of The Human Genome. Genome, 31(2), 929–937. DOI: 10.1139/g89-164.

Solihah, J., Kurniatanty, I., Subositi, D., Maruzy, A., Martiwi, I. N. A., Ainy, E. Q., Anam, K. & Dina, A. L. (2021). Genetic Profiling of Sida rhombifolia Originated from Several Indonesian Ethnicities Based on Sequence-related Amplified Polymorphism Markers. Jurnal Biodjati, 6(2), 203–212. DOI: 10.15575/biodjati.v6i2.14553.

Susanto, A. H., Dwiati, M. & Pratiwi, S. (2020). Molecular Characteristics of Two Phenotypically Identical Species of Asteraceae Based on the Intergenic Spacer trnT(UGU)-trnL(UAA). Biodiversitas, 21(11), 5164–5169. DOI: 10.13057/biodiv/d211122.

Susanto, A. H. & Dwiati, M. (2022). Short Communication: Assessment of cogongrass (Imperata cylindrica (L.) P.Beauv.) Genetic Variation in Java, Indonesia Using atpB-rbcL and trnL-F Intergenic Spacer. Biodiversitas, 23(5), 2760–2767. DOI: 10.13057/biodiv/d230558.

Syah, R. F. & Hidayat, P. (2020). Effects of the Alang-alang (Imperata cylindrica) Cutting Practices to the Gall Growth. IOP Conference Series: Earth and Environmental Science, 468(1). DOI: 10.1088/1755-1315/468/1/012014.

Taberlet, P., Gielly, L., Pautou, G. & Bouvet, J. (1991). Universal Primers for Amplification of Three Non-coding Regions of Chloroplast DNA. Plant Molecular Biology, 17(5), 1105–1109. DOI: 10.1007/BF00037152.

Tamura, K., Stecher, G. & Kumar, S. (2021). MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution, 38(7), 3022–3027. DOI: 10.1093/molbev/msab120.

Tekpinar, A. D., Aktaş, C., Kansu, Ç., Duman, H. & Kaya, Z. (2021). Phylogeography and Phylogeny of Genus Quercus L. (Fagaceae) in Turkey implied by Variations of trnT(UGU)-L(UAA)-F (GAA) Chloroplast DNA region. Tree Genetics and Genomes, 17(5), 1–18. DOI; 10.1007/s11295-021-01522-x.

Thompson, J. D., Higgins, D. G. & Gibson, T. J. (1994). CLUSTAL W: Improving The Sensitivity of Progressive Multiple Sequence Alignment Through Sequence Weighting, Position-Specific Gap Penalties and Weight Matrix Choice. Nucleic Acids Research, 22(22), 4673–4680. DOI: 10.1093/nar/22.22.4673.

Tsonev, S., Christov, N. K., Mihova, G., Dimitrova, A. & Todorovska, E. G. (2021). Genetic Diversity and Population Structure of Bread Wheat Varieties Grown in Bulgaria Based on Microsatellite and Phenotypic Analyses. Biotechnology and Biotechnological Equipment, 35(1), 1520–1533. DOI: 10.1080/13102818.2021.1996274.

VanWallendael, A., Alvarez, M. & Franks, S. J. (2021). Patterns of Population Genomic Diversity in the Invasive Japanese Knotweed Species Complex. American Journal of Botany, 108(5), 857–868. DOI: 10.1002/ajb2.1653.

Wallis, T. E. (1965). Analytical Microscopy: Its Aims and Methods in Relation to Foods, Water, Spices and Drugs. Little, Brown. Retrived from https://www.science.org/doi/10.1126/science.126.3273.566.a.

Wang, J., Qian, J., Jiang, Y., Chen, X., Zheng, B., Chen, S., Yang, F., Xu, Z. & Duan, B. (2022). Comparative Analysis of Chloroplast Genome and New Insights Into Phylogenetic Relationships of Polygonatum and Tribe Polygonateae. Frontiers in Plant Science, 13, 1-14. DOI: 10.3389/fpls.2022.882189.

Weidlich, E. W. A., Flórido, F. G., Sorrini, T. B. & Brancalion, P. H. S. (2020). Controlling Invasive Plant Species in Ecological Restoration: A Global Review. Journal of Applied Ecology, 57(9), 1806–1817. DOI: 10.1111/1365-2664.13656.

Yunli, W., Yangyang, W., Wenlong, X., Chaojie, W., Chongshi, C. & Shuping, Q. (2020). Genetic Diversity of Pumpkin Based on Morphological and SSR Markers. Pakistan Journal of Botany, 52(2), 477–487. DOI; 10.30848/PJB2020-2(6).




DOI: https://doi.org/10.15575/biodjati.v8i1.20689

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Jurnal Biodjati

License URL: https://creativecommons.org/licenses/by-nc-nd/4.0/

Indexing By :

      

      

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 

View My Stats