Effect of Chitosan-Coated Centella asiatica Nanoparticles on Kidney Histology Profile of Complicated Diabetic Mice


Bayyinatul Muchtaromah(1*), Ana Mar'a Konita Firdaus(2), Eko Budi Minarno(3), Prilya Dewi Fitriasari(4), Mei Rhomawati(5), Maharani Retna Duhita(6), Wira Eka Putra(7)

(1) Universitas Islam Negeri Maulana Malik Ibrahim Malang,  
(2) Magister Biology, Faculty of Science and Technology, UIN Maulana Malik Ibrahim Malang, Jl. Gajayana No.50, Malang, East Java, Indonesia, 65144, Indonesia
(3) Magister Biology, Faculty of Science and Technology, UIN Maulana Malik Ibrahim Malang, Jl. Gajayana No.50, Malang, East Java, Indonesia, 65144, Indonesia
(4) Department of Biology, Faculty of Science and Technology, UIN Maulana Malik Ibrahim Malang, Jl. Gajayana No.50, Malang, East Java, Indonesia, 65144, Indonesia
(5) Department of Chemistry, Faculty of Science and Technology, UIN Maulana Malik Ibrahim Malang, Jl. Gajayana No.50, Malang, East Java, Indonesia, 65144, Indonesia
(6) Department of Biology, Faculty of Science and Technology, UIN Maulana Malik Ibrahim Malang, Jl. Gajayana No.50, Malang, East Java, Indonesia, 65144, Indonesia
(7) Biotechnology Study Program, Department of Applied Sciences, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Jl. Semarang No. 5, Malang, East Java, Indonesia, 65145, Indonesia
(*) Corresponding Author

Abstract


Gotu kola (Centella asiatica) is a medicinal plant that has potential as an antioxidant and antidiabetic. Its compound is able to protect against diabetic nephropathy through the inhibition of oxidative stress. In terms of increasing drug potency and bioavailability of C. asiatica compounds, nanoparticle technology was used. This study aimed to determine the effect of C. asiatica nanoparticles coated with chitosan on the renal histology profile of complicated diabetic mice using a completely randomized design (CRD) with five treatment groups and five replications. The treatment groups were divided into K- (the experimental animals were not given any treatment), K+ (the experimental animals were induced by STZ), P1 (STZ + C. asiatica nanoparticles 120 mg/kgBW), P2 (STZ + C. asiatica nanoparticles 180 mg/kgBW), P3 (STZ + C. asiatica nanoparticles 240 mg/kgBW). The experimental animal model of complicated diabetes was induced by intraperitoneal STZ at a dose of 40 mg/kgBW for two days and STZ at a dose of 60 mg/kgBW for three days and then left for nine days. The C. asiatica nanoparticle therapy was given for 28 days. The parameters in this study were the results of scoring cell damage in the glomerular and tubular tissues (proximal and distal) of the kidney. The data obtained were tested for normality and homogeneity, then the normal and homogeneous data were tested with one-way ANOVA and further tested with Duncan's test. The statistical analysis results showed that C. asiatica coated with chitosan nanoparticles could reduce the damage to the histological profile of the glomerulus and tubules (proximal and distal) of the kidney of diabetic mice. C. asiatica-coated nanoparticles at a dose of 240 mg/kgBW showed the most optimal reduction in damage to the glomerular and tubular histology profiles.


Keywords


Centella asiatica, chitosan, diabetes nephropathy, histology, nanoparticles

Full Text:

PDF

References


Abdassah, M. (2017). Nanopartikel dengan Gelasi Ionik. Farmaka, 15(1), 45-52. DOI: 10.24198/jf.v15i1.12138.g5643.

Alicic, R. Z., Rooney, M. T. & Tuttle, K. R. (2017). Diabetic Kidney Disease : Challenges, Progress, and Possibilities. Clinical Journal of the American Society of Nephrology, 12(12), 2032–2045. DOI: 10.2215/CJN.11491116.

Aragno, M. & Mastrocola, R. (2017). Dietary Sugars and Endogenous Formation of Advanced Glycation Endproducts: Emerging Mechanisms of Disease. Nutrients, 9(4), 385. DOI: 10.3390/nu9040385.

Arfian, N., Maharani, A., Latifa, E. F., Kusumaningtyas, I., Witono, M. A., Athollah, K. & Setyaningsih, W. (2020). Ethanolic Extract of Centella asiatica Ameliorates Kidney Ischemia/ Reperfusion Injury Through Inhibition of Inflammatory Process. Malaysian Journal of Medicine and Health Science, 16(3), 71–77.

Barrera-chimal, J. & Jaisser, F. (2020). Pathophysiologic Mechanisms in Diabetic Kidney Disease : a Focus on Current and Future Therapeutic Targets. Diabetes, Obesity and Metabolism, 22, 16–31. DOI: 10.1111/dom.13969.

Bilous, R. & Donelly, R. (2015). Buku Pegangan Diabetes. Edisi Ke 4. Jakarta: Bumi Medika.

Chagnac, A., Zingerman, B., Rozen-Zvi, B. & Herman-Edelstein, M. (2019). Consequences of Glomerular Hyperfiltration: The Role of Physical Forces in The Pathogenesis of Chronic Kidney Disease in Diabetes and Obesity. Nephron, 143(1), 38-42. DOI: 10.1159/000499486.

Chen, L., Teng, H., Jia, Z., Battino, M., Miron, A., Yu, Z. & Xiao, J. (2017). Intracellular Signaling Pathways of Inflammation Modulated by Dietary Flavonoids: The Most Recent Evidence. Critical Reviews in Food Science and Nutrition. 1–17. DOI: 10.1080/10408398.2017.1345853.

Chen, Y., Wu, C., Shi, B., Qian, K. & Ding, Y. (2018). The Protective Effect of Asiatic Acid on Podocytes in The Kidney of Diabetic Rats. American Journal of Translational Research, 10(11), 3733–3741. DOI: 10.1016/j.biopha.2018.08.126.

Chen, Z., Peng, H. & Zhang, C. (2020). Advances in Kidney-Targeted Drug Delivery Systems. International Journal of Pharmaceutics, 587, 119679. DOI: 10.1016/j.ijpharm.2020.119679.

Esther, G. S. & Manonmani, A. J. (2014). Effect of Eugenia jambolana on Streptozotocin Nicotinamide Type 2 Diabetic Nephropathy in Rats. International Journal of Drug Development & Research, 6(1), 175–187.

Fahmi, M. Z. (2020). Nanoteknologi dalam Perspektif Kesehatan. Surabaya: Airlangga University Press.

Ganesan, P., Arulselvan, P. & Choi, D. K. (2017). Phytobioactive Compound-based Nanodelivery Systems for The Treatment of Type 2 Diabetes Mellitus–Current Status. International journal of nanomedicine, 12, 1097. 10.2147/IJN.S124601.

Hashim, P., Sidek, H., Helan, M. H. M., Sabery, A., Palanisamy, U. D. & Ilham, M. (2011). Triterpene Composition and Bioactivities of Centella asiatica. Molecules, 16(2), 1310–1322. DOI: 10.3390/molecules16021310.

Hauser, P. V, Chang, H., Yanagawa, N. & Hamon, M. (2021). Nanotechnology, Nanomedicine, and The Kidney. Applied Sciences, 11(16), 1–19. DOI: 10.3390/app11167187.

Hebbar, S., Dubey, A., Ravi, G. S., Kumar, H., & Saha, S. (2019). RP-HPLC Method Development and Validation of Asiatic Acid Isolated from The Plant Centella asiatica. Int J App Pharm, 11(3). DOI: 10.22159/ijap.2019v11i3.31525.

Hung, Y., Yang, H. & Yin, M. (2015). Asiatic Acid and Maslinic Acid Protected Heart Via Anti-glycative and Anti-coagulatory Activities in Diabetic Mice. Food & Function, 6(9), 2967–2974. DOI: 10.1039/C5FO00549C.

Irianto, H. E. & Muljanah, I. (2011). Proses dan Aplikasi Nanopartikel Kitosan sebagai Penghantar Obat. Squalen, 6(1), 1–8.

Kabir, A. U., Samad, M. Bin, Costa, N. M. D., Akhter, F., Ahmed, A., & Hannan, J. M. A. (2014). Anti-hyperglycemic Activity of Centella asiatica is Partly Mediated by Carbohydrase Inhibition and Glucose-fiber Binding. BMC Complementary and Alternative Medicine, 14(1), 1–14. DOI: 10.1186/1472-6882-14-31.

Lathifah, N. L. (2017). Hubungan Durasi Penyakit dan Kadar Gula Darah dengan Keluhan Subyektif Penderita Diabetes Melitus. Jurnal Berkala Epidemiologi, 5(2), 231–239. DOI: 10.20473/jbe.v5i2.2017.231-239.

Legiawati, L., Fadilah, F., Bramono, K., Setiati, S. & Yunir, E. (2020). Molecular Dynamic Simulation of Centella asiatica Compound as an Inhibitor of Advanced Glycation End Products. Journal of Applied Pharmaceutical Science, 10(08): 001-007. DOI: 10.7324/JAPS.2020.10801.

Lukiati, B. & Arifah, S. N. (2019). The Role of Sechium edule Fruits Ethanolic Extract in Insulin Production and Malondialdehyde Level in Stz- Induced Diabetic Rat. Journal of Tropical Biodiversity and Biotechnology, 4(1). DOI: 10.22146/jtbb.33948.

Lv, J., Sharma, A., Zhang, T., Wu, Y. & Ding, X. (2018). Pharmacological Review on Asiatic Acid and Its Derivatives : A Potential Compound. SLAS TECHNOLOGY: Translating Life Sciences Innovation, 23(2), 11–17. DOI: 10.1177/2472630317751840.

Mahmoodnia, L., Aghadavod, E., Beigrezaei, S. & Rafieian-kopaei, M. (2017). An Update on Diabetic Kidney Disease, Oxidative Stress and Antioxidant Agents. Journal of Renal Injury Prevention, 6(2), 153–157. https://doi.org/10.15171/jrip.2017.30.

Maneesai, P., Bunbupha, S., Kukongviriyapan, U., Prachaney, P., Tangsucharit, P., Kukongviriyapan, V. & Pakdeechote, P. (2016). Asiatic Acid Attenuates Renin-Angiotensin System Activation and Improves Vascular Function in High-Carbohydrate, High-Fat Diet Fed Rats. BMC complementary and alternative medicine, 16(1), 1-11. DOI: 10.1186/s12906-016-1100-6.

Mohebbati, R., Kamkar-Del, Y., Kazemi, F., Rakhshandeh, H. & Shafei, M. N. (2020). Hypotensive Effect of Centella asiatica L. Extract in Acute Angiotensin II-induced Hypertension. Iranian Journal of Pharmaceutical Sciences, 16(4), 71-80. DOI: 10.22034/IJPS.2020.121635.1642.

Muchtaromah, B., Griana, T. P. & Hakim, A. L. (2013). Gambaran Histologi Pankreas Tikus Diabetes Mellitus Kronis yang Dicekoki Daun Centella asiatica (L.) Urban dalam Bentuk Segar, Rebusan dan Ekstrak etanol. Saintis (Jurnal Integrasi Sains dan Islam), 2(1).

Muchtaromah, B., Habibie, S., Ma’rif, B., Ramadhan, R., Savitri, E. S. & Maghfiroh, Z. F. (2021). Comparative Analysis of Phytochemicals and Antioxidant Activity of Ethanol Extract of Centella asiatica Leaves and its Nanoparticle Form. Tropical Journal of Natural Product Research, 5(3), 465–469. DOI: 10.26538/tjnpr/v5i3.9.

Nimse, S. B. & Pal, D. (2015). Free Radicals, Natural Antioxidants, and their Reaction Mechanisms. RSC Advances, 5(35), 27986–28006. DOI: 10.1039/C4RA13315C.

Novaes, A. D. S. Borges, F. T., Maquigussa, E., Varela, V. A., Dias, M. V. S., & Boim, M. A. (2020). Influence of High Glucose on Mesangial Cell-Derived Exosome Composition, Secretion, and Cell Communication. Scientific Reports, 9(1), 1-13. DOI: 10.1038/s41598-020-58753-6.

Nowotny, K., Jung, T., Höhn, A., Weber, D., & Grune, T. (2015). Advanced Glycation End Products and Oxidative Stress in Type 2 Diabetes Mellitus. Biomolecules, 5(1), 194-222. DOI: 10.3390/biom5010194.

Orhan, I. E. (2012). Centella asiatica ( L .) Urban : From Traditional Medicine to Modern Medicine with Neuroprotective Potential. Evidence-Based Complementary and Alternative Medicine, (946259). DOI: 10.1155/2012/946259.

Pakdeechote, P., Bunbupha, S., Kukongviriyapan, U., Prachaney, P., Khrisanapant, W. & Kukongviriyapan, V. (2014). Asiatic Acid Alleviates Hemodynamic and Metabolic Alterations via Restoring eNOS/iNOS Expression, Oxidative Stress, and Inflammation in Diet-Induced Metabolic Syndrome Rats. Nutrients, 6(1), 355–370. DOI: 10.3390/nu6010355.

Pakki, E., Sumarheni, Aisyah F, I. & Safirahidzni, S. (2016). Formulasi Nanopartikel Ekstrak Bawang Dayak (Eleutherine americana (Aubl) Merr) dengan Variasi Konsentrasi Kitosan- Tripolifosfat (Tpp). J. Trop. Pharm. Chem, 3(4), 251–263. DOI: 10.25026/jtpc.v3i4.113.

Rana, J. S., Khan, S. S., Lloyd-Jones, D. M. & Sidney, S. (2021). Changes in Mortality in Top 10 Causes of Death from 2011 to 2018. Journal of general internal medicine, 36, 2517-2518. DOI: 10.1007/s11606-020-06070-z.

Razali, N. N. M., Ng, C. T. & Fong, L. Y. (2019). Cardiovascular Protective Effects of Centella asiatica and Its Triterpenes : A Review. Planta Medica, 85(16), 1203–1215. DOI: 10.1055/a-1008-6138.

Sanajou, D., Ghorbani, A., Argani, H. & Aslani, S. (2018). AGE-RAGE Axis Blockade in Diabetic Nephropathy : Current Status and Future Directions. European Journal of Pharmacology, 833, 158–164. DOI: 10.1016/j.ejphar.2018.06.001.

Sancar-bas, S., Gezginci-oktayoglu, S. & Bolkent, S. (2015). Exendin-4 Attenuates Renal Tubular Injury by Decreasing Oxidative Stress and Inflammation in Streptozotocin-Induced Diabetic Mice. Growth Factors, 33(5), 419–429. DOI: 10.3109/08977194.2015.1125349.

Serang, Y. & Febrianto, Y. (2018). Pengaruh Pemberian Ekstrak Etanol Daun Jeruk Nipis (Citrus aurantifolia) pada Proteksi Pankreas Tikus Diabetes yang Diinduksi Aloksan. Jurnal Farmasi & Sains Indonesia, 1(2), 56–62. DOI: 10.29313/kedokteran.v0i0.4414.

Setyaningsih, W. A., Arfian, N., Fitriawan, A. S., Yuniartha, R. & Sari, D. C. (2021). Ethanolic Extract of Centella asiatica Treatment In The Early Stage of Hyperglycemia Condition Inhibits Glomerular Injury And Vascular Remodeling In Diabetic Rat Model. Evidence-Based Complementary and Alternative Medicine, 6671130. DOI: 10.1155/2021/6671130.

Shen, C. Y., Lu, C. H., Wu, C. H., Li, K. J., Kuo, Y. M., Hsieh, S. C., & Yu, C. L. (2020). The Development of Maillard Reaction, and Advanced Glycation End Product (AGE)-Receptor for AGE (RAGE) Signaling Inhibitors as Novel Therapeutic Strategies for Patients with AGE-Related Diseases. Molecules, 25(23), 5591. DOI: 10.3390/foods11121813.

Singh, A. K., Mishra, S. B. & Verma, B. K. (2019). Impact of Nanotechnology on Diabetes: Phyto-constituents Based Overview. International Journal of Pharmacy Research. 10(1).

Singh, V. P., Bali, A., Singh, N. & Jaggi, A. S. (2014). Advanced Glycation End Products and Diabetic Complications. The Korean Journal of Physiology & Pharmacology: Official Journal of the Korean Physiological Society and the Korean Society of Pharmacology, 18(1), 1. DOI: 10.4196/kjpp.2014.18.1.1.

Song, Q., Liu, J., Dong, L., Wang, X., & Zhang, X. (2021). Novel Advances in Inhibiting Advanced Glycation End Product Formation Using Natural Compounds. Biomedicine & Pharmacotherapy, 140, 111750. DOI: 10.1016/j.biopha.2021.111750.

Stephens, J. W., Brown, K. E., & Min, T. (2020). Chronic Kidney Disease in Type 2 Diabetes : Implications for Managing Glycemic Control , Cardiovascular & Renal Risk. Diabetes, Obesity and Metabolism, 22, 32–45. DOI: 10.1111/dom.13942.

Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB. IDF Diabetes Atlas: Global, Regional and Country-level Diabetes Prevalence Estimates for 2021 and Projections for 2045. Diabetes research and clinical practice, 183, 109119. DOI: 10.1016/j.diabres.2021.109119.

Tulung, G. L., Bodhi, W., & Siampa, J. P. (2021). Effectiveness Test of Ethanol Extract of Gotu Kola Leaf (Centella asiatica ( L .) Urban ) as Antidiabetic Against Alloxan Induced Male White Rat (Rattus norvegicus). Pharmacon, 10(1), 736–742. DOI: 10.35799/pha.10.2021.32767.

Ugahari, L. E., Mewo, Y. M., & Kaligis, S. H. M. (2016). Gambaran Kadar Glukosa Darah Puasa pada Pekerja Kantor. Biomedik, 4(2). https://doi.org/10.35790/ebm.v4i2.14616.

Utomo, Y., Hidayat, A., Dafip, M., & Sasi, F. A. (2012). Studi Histopatologi Hati Mencit (Mus musculus L.) yang Diinduksi Pemanis Buatan. Indonesian Journal of Mathematics and Natural Sciences, 35(2), 122–129. DOI: 10.15294/ijmns.v35i2.2604.

Wang, K. C., & Zane, L. T. (2010). Recent Advances in Acne Vulgaris Research: Insight and Clinical Implication. Advances in Dermatology, 24, 197–209. DOI: 10.1016/j.yadr.2008.09.002.

Widiasari, S. (2018). Mekanisme Inhibisi Angiotensin Converting Enzim oleh Flavonoid pada Hipertensi. Collaborative Medical Journal (CMJ), 1(2), 30-44.

Yan, S. F., Ramasamy, R., & Schmidt, A. M. (2008). Mechanisms of Disease: Advanced Glycation End-Products and Their Receptor in Inflammation and diabetes Complications. Nature clinical practice Endocrinology & Metabolism, 4(5), 285-293. DOI: 10.1038/ncpendmet0786.

Yang C, Guo Y, Huang TS, Zhao J, Huang XJ, Tang HX, An N, Pan Q, Xu YZ, Liu HF. (2018). Asiatic Acid Protects Against Cisplatin-Induced Acute Kidney Injury Via Anti-Apoptosis and Anti-Inflammation. Biomed Pharmacother, 107,1354-1362. DOI: 10.1016/j.biopha.2018.08.126.

Yin, M. (2015). Review Article Inhibitory Effects and Actions of Pentacyclic Triterpenes Upon Glycation. Biomedicine, 5(3), 1–8. DOI: 10.7603/s40681-015-0013-x.

Zhu, Q., Zeng, J., Li, J., Chen, X., Miao, J., Jin, Q. & Chen, H. (2020). Effects of Compound Centella on Oxidative Stress and Keap1-Nrf2-ARE Pathway Expression in Diabetic Kidney Disease Rats. Evidence-Based Complementary and Alternative Medicine, 1-13. DOI: 10.1155/2020/9817932.




DOI: https://doi.org/10.15575/biodjati.v8i2.21430

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Jurnal Biodjati

License URL: https://creativecommons.org/licenses/by-nc-nd/4.0/

Indexing By :

      

      

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 

View My Stats