Detection of Plantaricin-Encoding Gene and Its Partial Purification in Lactobacillus plantarum BP102


Elsa Mega Suryani(1*), Yoga Dwi Jatmiko(2), Irfan Mustafa(3)

(1) Master Study program, Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya, Jl. Veteran No.10-11, Malang, East Java, Indonesia, 65145 Department of Microbiology, Faculty of Health Sciences, Universitas Maarif Hasyim Latif, Jl. Raya Ngelom Megare No.30, Sidoarjo - East Java, Indonesia 61257, Indonesia
(2) Department of Biology, Faculty of Mathematics and Natural Sciences, Jl. Veteran No.10-11, Malang, East Java, Universitas Brawijaya, Indonesia 65145, Indonesia
(3) Department of Biology, Faculty of Mathematics and Natural Sciences, Jl. Veteran No.10-11, Malang, East Java, Universitas Brawijaya, Indonesia 65145, Indonesia
(*) Corresponding Author

Abstract


Lactobacillus plantarum BP102 isolated from garlic bulb tissue has probiotic properties, including producing bacteriocin called plantaricin. This study aimed to detect the gene encoding bacteriocin produced by Lactobacillus plantarum BP102, and to evaluate the bacteriocin activity at each stage of partial purification. After the end of the log phase of L. plantarum BP102 was determined, and the bacteriocin-encoding genes were checked by PCR technique. Partial purification of bacteriocin was elucidated including pH-neutralized cell-free-supernatant (CFS), precipitation using 80% of ammonium sulfate, and dialysis (cut-off 10 kDa), then the bacteriocin activity in every partial purification stage was evaluated. The molecular weight of plantaricin was estimated using SDS-PAGE analysis. Lactobacillus plantarum BP102 harbored the gene encoding plantaricin (pln) biosynthesis, namely plnEF and plnK genes. The activity of crude bacteriocin was inactivated by the presence of proteinase-K enzyme. The protein concentration was gradually decreased along with the purification process. The bacteriocin activity was demonstrated at each step of the purification process (CFS, precipitation, and dialysis) against Bacillus cereus by 9.23 ± 0.20 mm, 7.86 ± 0.15 mm, and 7.6 ± 0.10 mm, respectively; while, Escherichia coli by 10.3 ± 0.55 mm, 7.4 ± 0.1 mm, and 6.86 ± 0.45, respectively. The molecular weight of partially purified bacteriocin BP102 was found to be approximately 15.9 kDa. The overlaid part of the gel showed a slight inhibition against E. coli due to a low protein concentration. This bacteriocin purification process should be further optimized to improve the bacteriocin activity that could be useful for food preservation.


Keywords


Lactobacillus plantarum, partially purified, plantaricin, precipitation, probiotics

Full Text:

PDF

References


Ahaddin, A. Y., Budiarti, S., Mustopa, A. Z., Darusman, H. S. & Triratna, L. (2021). Short Communication: Acute Toxicity Study of Plantaricin from Lactobacillus Plantarum s34 and Its Antibacterial Activity. Biodiversitas, 22(1), 227–232. DOI: 10.13057/biodiv/d220128.

Alang, H., Kusnadi, J., Ardyati, T. & Suharjono. (2020). Optimization and Characterization Of Enterocin Enterococcus faecalis K2B1 Isolated From Toraja’s Belang Buffalo Milk, South Sulawesi, Indonesia. Biodiversitas, 21(3), 1236–1242. DOI: 10.13057/biodiv/d210351.

Altalhi, A. A. (2008). Antilisterial Activity of Plantaricin UG1 During Manufacture Of Zabady and Kareesh Cheese: Two Arabian Dairy Products. International Journal of Biomedical Science, 4(4), 319–322.

Andarilla, W., Sari, R., & Apridamayanti, P. (2011). Optimasi Aktivitas Bakteriosin yang dihasilkan oleh Lactobacillus casei dari Sotong Kering. Jurnal Pendidikan Informatika dan Sains, 7(2), 187. DOI: 10.31571/saintek.v7i2.1041.

Aruna, B. & Srivalli, D. M. (2016). Isolation and Characterization of Bacteriocin Producing Lactic Acid Bacteria from Fermented Bengal Gram. International Journal of Pharmaceutical Science Invention, 5(4), 41–46. Retrived from http://www.ijpsi.org/Papers/Vol5(4)/H0504041046.pdf.

Averina, J., Subcheva, E., Kubatov, A. & Shaneva, K. E. A. (2020). Assessment of The Efficiency Electromobile Using in Russia. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, (4.1), 19–26. DOI: 10.5593/sgem2020/4.1/s17.003.

Azhar, M., Yousaf, M., Maher, S. & Fatmi, M. Q. (2023). Discovering Potential Bacteriocins Against Pseudomonas fragi: a Subtractive Proteomics and Molecular Dynamic Simulation Study for Food Preservation. Applied Biochemistry and Biotechnology, 1–18. DOI: 10.1007/S12010-023-04509-7/METRICS.

Báez, G. D., Moro, A., Ballerini, G. A., Busti, P. A. & Delorenzi, N. J. (2011). Comparison between Structural Changes of Heat-Treated and Transglutaminase Cross-Linked Beta-Lactoglobulin And Their Effects on Foaming Properties. Food Hydrocolloids, 25(7), 1758–1765. DOI: 10.1016/j.foodhyd.2011.02.033.

Barbosa, J., Albano, H., Silva, B., Almeida, M. H., Nogueira, T. & Teixeira, P. (2021). Characterization of a Lactiplantibacillus plantarum R23 Isolated from Arugula by Whole-Genome Sequencing and Its Bacteriocin Production Ability. International Journal of Environmental Research and Public Health, 18(11). DOI: 10.3390/ijerph18115515.

Barcenilla, C., Ducic, M., López, M., Prieto, M. & Álvarez-Ordóñez, A. (2022). Application of Lactic Acid Bacteria for The Biopreservation of Meat Products: A Systematic Review. Meat Science, 183. DOI: 10.1016/j.meatsci.2021.108661.

Bizani, D. & Brandelli, A. (2002). Characterization of a Bacteriocin Produced by a Newly Isolated Bacillus sp. Strain 8A. Journal of Applied Microbiology, 93(3), 512–519. DOI: 10.1046/j.1365-2672.2002.01720.x.

Chen, Y. S., Wang, Y. C., Chow, Y. S., Yanagida, F., Liao, C. C. & Chiu, C. M. (2014). Purification and Characterization of Plantaricin Y, a Novel Bacteriocin Produced by Lactobacillus plantarum 510. Archives of Microbiology, 196(3), 193–199. DOI: 10.1007/s00203-014-0958-2.

Cui, G., Pan, C., Xu, P., Li, Y., Wang, L., Gong, B., Li, X. & Huang, S. (2020). Purification and Characterization of a Novel Bacteriocin Produced by Enterococcus faecalis CG-9 from Human Saliva. Biotechnology and Biotechnological Equipment, 34(1), 1224–1233. DOI: 10.1080/13102818.2020.1830714.

De Giani, A., Bovio, F., Forcella, M., Fusi, P., Sello, G. & Di Gennaro, P. (2019). Identification of a Bacteriocin-Like Compound from Lactobacillus plantarum with Antimicrobial Activity and Effects on Normal and Cancerogenic Human Intestinal Cells. AMB Express, 9(1). DOI: 10.1186/s13568-019-0813-6.

Deng, L., Liu, L., Fu, T., Li, C., Jin, N., Zhang, H., Li, C., Liu, Y. & Zhao, C. (2023). Genome Sequence and Evaluation of Safety and Probiotic Potential of Lactiplantibacillus plantarum LPJZ-658. Microorganisms, 11(6), 1620. DOI: 10.3390/microorganisms11061620.

Diep, D. B., Håvarstein, L. S., & Nes, I. F. (1995). A Bacteriocin-like Peptide Induces Bacteriocin Synthesis in Lactobacillus plantarum C11. Molecular Microbiology, 18(4), 631–639. DOI: 10.1111/j.1365-2958.1995.mmi_18040631.x.

Eric Donald, K. N., Antoine Assamoi, A., Djeneba Ouattara, H. & Jean Noel Yao, K. (2023). Isolation and Screening of Lactobacillus Plantarum Strains with Potential Probiotic Aptitudes from Neglected Edible Vegetable and Fruits of Cote D’Ivoire Lactofermenattion Lactobacillus plantarum Anti-oxidant Anti-inflammatory Côte D’ivoire. Int J Nutr Sci, 8(3).

Even, S., Lindley, N. D., Loubière, P. & Cocaign-Bousquet, M. (2002). Dynamic Response of Catabolic Pathways to Autoacidification in Lactococcus lactis: Transcript Profiling and Stability in Relation to Metabolic and Energetic Constraints. Molecular Microbiology, 45(4), 1143–1152. DOI: 10.1046/j.1365-2958.2002.03086.x.

Fadel, E., Al-Jumaily, A. & Raheema, R. H. (2015). Characterization of Purified Bacteriocin (Plantaricin and Acidocin) Produced from Lactobacillus Isolates and Study its Effects Against Growth Pathogenic Bacteria Detection of some virulence genes in diarrheagenic E.coli isolated from pediatric patients wi. October 2018. Retrived from www.ijppr.humanjournals.com.

Fricourt, B. V., Barefoot, S. F., Testin, R. F.,& Hayasaka, S. S. (1994). Detection and Activity of Plantaricin F an Antibacterial Substance from Lactobacillus plantarum BF001 Isolated from Processed Channel Catfish. Journal of Food Protection, 57(8), 698–702. DOI: 10.4315/0362-028x-57.8.698.

Gao, Y., Jia, S., Gao, Q. & Tan, Z. (2010). A Novel Bacteriocin With A Broad Inhibitory Spectrum Produced By Lactobacillus sake C2, Isolated From Traditional Chinese Fermented Cabbage. Food Control, 21(1), 76–81. DOI: 10.1016/j.foodcont.2009.04.003.

Hanke, M., Hansen, N., Chen, R., Grundmeier, G., Fahmy, K. & Keller, A. (2022). Salting-Out of DNA Origami Nanostructures by Ammonium Sulfate. International Journal of Molecular Sciences, 23(5). DOI: 10.3390/ijms23052817.

Hechard, Y. & Sahl, H. (2002). Mode of Action of Modified and Unmodified Bacteriocins. Biochimie, 284(5-6):545-57. DOI: 10.1016/s0300-9084(02)01417-7.

Heidari, Z., Ghasemi, M., F., Modiri, L. (2021). Antimicrobial Activity of Bacteriocin Produced By A New Latilactobacillus Curvatus sp. LAB-3H Isolated from Traditional Yogurt. Arch Microbiol, (1), 101. DOI: 10.1007/s00203-021-02641-8. PMID: 34964911.

Holo, H., Jeknic, Z., Daeschel, M., Stevanovic, S. & Nes, I. F. (2001). Plantaricin W from Lactobacillus plantarum Belongs to a New Family of Two-Peptide Lantibiotics. Microbiology, 147(3), 643–651. DOI: 10.1099/00221287-147-3-643.

Jawan, R., Abbasiliasi, S., Tan, J. S., Mustafa, S., Halim, M. & Ariff, A. B. (2020). Influence of Culture Conditions and Medium Compositions on The Production of Bacteriocin-like Inhibitory Substances by Lactococcus Lactis GH1. Microorganisms, 8(10), 1–14. DOI: 10.3390/microorganisms8101454.

Jean, K., Yao, N., Ouattara, H. D., Eric, K., Donald, N. & Assamoi, A. A. (2023). Preliminary Screening of Four Lactic Acid Bacteria with Better Health-Promoting Attributes Isolated from Five Ivorian Stapple Foods for Food Industry. American Journal of Microbiological Research, 11(2), 31-39. DOI: 10.12691/ajmr-11-2-1

Kanwar, L., Gogoi, B. K. & Goswami, P. (2002). Production of a Pseudomonas Lipase in n-alkane Substrate and Its Isolation Using An Improved Ammonium Sulfate Precipitation Technique. Bioresource Technology, 84(3), 207–211. DOI: 10.1016/S0960-8524(02)00061-5.

Kawahara, A., Zendo, T., & Matsusaki, H. (2022). Identification and Characterization of Bacteriocin Biosynthetic Gene Clusters Found in Multiple Bacteriocins Producing Lactiplantibacillus plantarum PUK6. Journal of Bioscience and Bioengineering, 133(5), 444–451. DOI: 10.1016/J.JBIOSC.2022.01.008.

Khochamit, N., Siripornadulsil, S., Sukon, P. & Siripornadulsil, W. (2015). Antibacterial Activity and Genotypic-Phenotypic Characteristics of Bacteriocin-Producing Bacillus subtilis KKU213: Potential as A Probiotic Strain. Microbiological Research, 170, 36–50. DOI: 10.1016/j.micres.2014.09.004.

Lei, S., Zhao, R., Sun, J., Ran, J., Ruan, X. & Zhu, Y. (2020). Partial Purification and Characterization of a Broad-Spectrum Bacteriocin Produced by a Lactobacillus plantarum ZRX03 Isolated From Infant’s Feces. Food Science and Nutrition, 8(5), 2214–2222. DOI: 10.1002/fsn3.1428.

Lin, X., Xu, J., Shi, Z., Xu, Y., Fu, T., Zhang, L. & He, F. (2021). Evaluation of The Antibacterial Effects And Mechanism of Plantaricin 149 From Lactobacillus plantarum NRIC 149 on The Peri-implantitis Pathogens. Scientific Reports, 11(1), 1–8. DOI: 10.1038/s41598-021-00497-y.

Lyu, Z., Yang, P., Lei, J., & Zhao, J. (2023). Biological Function of Antimicrobial Peptides on Suppressing Pathogens and Improving Host Immunity. Antibiotics, 12, 1037. DOI: 10.3390/antibiotics12061037Academic

Matejčeková, Z., Liptáková, D., Spodniaková, S. & Valík, Ľ. (2016). Characterization of The Growth of Lactobacillus plantarum in Milk in Dependence on Temperature. Acta Chimica Slovaca, 9(2), 104–108. DOI: 10.1515/acs-2016-0018.

Matsusaki, H., Endo, N., Sonomoto, K., & Ishizaki, A. (1996). Lantibiotic Nisin Z Fermentative Production by Lactococcus lactis 10-1: Relationship Between Production of The Lantibiotic and Lactate and Cell Growth. Applied Microbiology and Biotechnology, 45(1–2), 36–40. DOI: 10.1007/s002530050645.

Mekala, P. N., Mohammad, R., & Ansari, H. (2023). Biotechnological Potential of Lactic Acid Bacteria Derived Bacteriocins in Sustainable Food Preservation. World Journal of Biology Pharmacy and Health Sciences, 14(03), 024–035. DOI: 10.30574/wjbphs.2023.14.3.0245.

Meral Aktaş, H., Erdoğan, A. & Çeti̇n, B. (2023). Bacteriocin Characterization of Autochtonous Lactococcus lactis L54 and Its Application as Starter Culture for Beyaz Cheese. Food Bioscience, 53, 102739. DOI: 10.1016/J.FBIO.2023.102739.

Mir, N. A., Riar, C. S. & Singh, S. (2021). Improvement in The Functional Properties of Quinoa (Chenopodium quinoa) Protein Isolates After The Application of Controlled Heat-treatment: Effect on Structural Properties. Food Structure, 100189 DOI: 10.1016/j.foostr.2021.100189.

Mulyawati, A. I., Ardyati, T. & Jatmiko, Y. D. (2019). Partial Purification and Characterization of Bacteriocins from Lactobacillus plantarum SB7 and Bacillus amyloliquefaciens BC9 Isolated from Fermented Sumbawa Mare’s Milk as Food Preservative Candidates. AIP Conference Proceedings, 2120. DOI: 10.1063/1.5115747.

Parlindungan, E., Dekiwadia, C. & Jones, O. A. H. (2021). Factors That Influence Growth and Bacteriocin Production in Lactiplantibacillus plantarum B21. Process Biochemistry, 107, 18–26. DOI: 10.1016/j.procbio.2021.05.009.

Pei, J., Jin, W., Abd El-Aty, A. M., Baranenko, D. A., Gou, X., Zhang, H., Geng, J., Jiang, L., Chen, D. & Yue, T. (2020). Isolation, Purification, and Structural Identification of a New Bacteriocin Made by Lactobacillus plantarum Found in Conventional Kombucha. Food Control, 110, 106923. DOI: 10.1016/j.foodcont.2019.106923.

Putri, N. H. S., Nurdiwiyati, D., Lestari, S., Ramdhan, B., Efendi, M. & Nurhidayat, N. (2019). Aktivitas Antibakteri Ekstrak Tangkai dan Daun Begonia Multangula blume terhadap Porphyromonas gingivalis. Jurnal Biologi UNAND, 7(1), 51. DOI: 10.25077/jbioua.7.1.51-58.2019.

Seddik, H. A., Bendali, F., Gancel, F., Fliss, I., Spano, G. & Drider, D. (2017). Lactobacillus plantarum and Its Probiotic and Food Potentialities. Probiotics and Antimicrobial Proteins, 9(2), 111–122. DOI: 10.1007/s12602-017-9264-z.

Setiarto, R. H. B., Anshory, L. & Wardana, A. A. (2023). Biosynthesis of Nisin, Antimicrobial Mechanism and Its Applications As a Food Preservation: A Review. IOP Conference Series: Earth and Environmental Science, 1169(1). DOI: 10.1088/1755-1315/1169/1/012105.

Siregar, I. Z., Ramdhani, M. J., Karlinasari, L., Adzkia, U., Arifin, M. Z., & Dwiyanti, F. G. (2021). DNA Isolation Success Rates from Dried and Fresh Wood Samples of Selected 20 Tropical Wood Tree Species for Possible Consideration in Forensic Forestry. Science and Justice, 61(5), 573–578. DOI: 10.1016/j.scijus.2021.07.002.

Tahara, T., Oshimura, M., Umezawa, C. & Kanatani, K. (1996). Isolation, Partial Characterization, and Mode of Action of Ccidocin J1132, a Two-Component Bacteriocin Produced by Lactobacillus acidophilus JCM 1132. Applied and Environmental Microbiology, 62(3), 892–897. DOI: 10.1128/aem.62.3.892-897.1996.

Tenea, G. N. & Barrigas, A. (2018). The efficacy of Bacteriocin-Containing Cell-Free Supernatant from Lactobacillus plantarum Cys5-4 to Control Pathogenic Bacteria Growth in Artisanal Beverages. International Food Research Journal, 25(5), 2131–2137.

Todorov, S. D. & Dicks, L. M. T. (2006). Screening for Bacteriocin-Producing Lactic Acid Bacteria From Boza, A Traditional Cereal Beverage From Bulgaria: Comparison of The Bacteriocins. Process Biochemistry, 41(1), 11–19. DOI: 10.1016/j.procbio.2005.01.026.

Usman, A. & Ruqqayah (2023). Antibacterial Activity of Crude Bacteriocins Produced by Lactobacillus Species Isolated from Nono (Fermented Milk). UMYU Scientifica, 2(1), 95–105 DOI: 10.56919/usci.2123.0012.

Wafula, E. N., Kuja, J. O., Wekesa, T. B. & Wanjala, P. M. (2023). Isolation and Identification of Autochthonous Lactic Acid Bacteria from Commonly Consumed African Indigenous Leafy Vegetables in Kenya. Bacteria, 2(1), 1–20. DOI: 10.3390/bacteria2010001.

Wardhani, A. W. (2019). (n.d.). Eksplorasi Bakteri Asam Laktat Endofit yang Berpotensi ebagai Probiotik dari Tanaman obat. Skripsi. Universitas Brawijaya. Malang.

Xu, D., Liu, Y., Li, X., Wang, F., Huang, Y. & Ma, X. (2023). Application and Effect of Pediococcus pentosaceus and Lactiplantibacillus plantarum as Starter Cultures on Bacterial Communities and Volatile Flavor Compounds of Zhayu, a Chinese Traditional Fermented Fish Product. Foods, 12(9). DOI: 10.3390/foods12091768.

Yadav, M. K. & Tiwari, S. K. (2021). Polydiacetylene Vesicles Acting As Colorimetric Sensor For The Detection of Plantaricin LD1. Analytical Biochemistry, 631, 114368. DOI: 10.1016/j.ab.2021.114368.

Zacharof, M. P. & Lovitt, R. W. (2012). Bacteriocins Produced by Lactic Acid Bacteria a Review Article. APCBEE Procedia, 2, 50–56. DOI: 10.1016/j.apcbee.2012.06.010.

Zhang, J., Yang, Y., Yang, H., Bu, Y., Yi, H., Zhang, L., Han, X. & Ai, L. (2018). Purification and Partial Characterization of Bacteriocin Lac-B23, A Novel Bacteriocin Production by Lactobacillus plantarum J23, Isolated From Chinese Traditional Fermented Milk. Frontiers in Microbiology, 9(OCT). DOI: 10.3389/fmicb.2018.02165.

Zhao, D., Meng, F., Zhou, L., Lu, F., Bie, X., Sun, J., Lu, Z. & Lu, Y. (2021). Maltose Effective Improving Production and Regulatory Biosynthesis of Plantaricin EF in Lactobacillus plantarum 163. Applied Microbiology and Biotechnology, 105(7), 2713–2723. DOI: 10.1007/s00253-021-11218-w.




DOI: https://doi.org/10.15575/biodjati.v8i2.27851

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Jurnal Biodjati

License URL: https://creativecommons.org/licenses/by-nc-nd/4.0/

Indexing By :

      

      

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 

View My Stats