Metallothionein Protein Modeling from Pseudomonas aeruginosa PAO1 as A Metal Biosorber Candidate


Fajri Ikhsan(1*), Ahmad Shulhany(2), Syarif Abdullah(3)

(1) Metallurgical Engineering Depart ment, Faculty of Engineering, University of Sultan Ageng Tirtayasa, Jl. Sudirman Km 3, Banten, Indonesia, 42435, Indonesia
(2) Civil Engineering Department, Faculty of Engineering, University of Sultan Ageng Tirtayasa, Jl. Sudirman Km 3, Banten, Indonesia, 42435, Indonesia
(3) Mechanical Engineering Department, Faculty of Engineering, University of Sultan Ageng Tirtayasa, Jl. Sudirman Km 3, Banten, Indonesia, 42435, Indonesia
(*) Corresponding Author

Abstract


Metallothionein is a protein that is well known to play a role in metal metabolism in bacterial cells. Metallothionein is a multifunctional protein that has the potential to be used as a metal adsorbing agent. Pseudomonas aeruginosa is a ubiquitous gram-negative and rapid-growth bacterium. In addition, the complete genome of Pseudomonas aeruginosa has been largely known. Pseudomonas aeruginosa PAO1 is a strain of Pseudomonas aeruginosa that the complete genome of this strain is easily accessible in NCBI. These features make Pseudomonas aeruginosa PAO1 become a common model in bacterial studies. This research aimed to find and model the putative metallothionein of Pseudomonas aeruginosa PAO1. This research was carried out by bioinformatic and protein homology methods. Based on the results, the putative metallothionein of Pseudomonas aeruginosa PAO1 was found in the bacterial genome at base sequence of 2355918 to 2356157. The putative metallothionein-encoding gene of Pseudomonas aeruginosa PAO1 has a size of 240 bp. The translation result of the gene showed that the putative metallothionein of Pseudomonas aeruginosa PAO1 has 79 amino acids. The modeling result showed the 3D structure of the putative metallothionein of Pseudomonas aeruginosa PAO1 is similar to the metallothionein 3D structure of Pseudomonas fluorescens Q2-87. The 3D structure of the putative metallothionein of Pseudomonas aeruginosa PAO1 was dominated by turn and coil, but contained 1 α-helix structure and 2 β-sheet structures. Based on protein analysis, it was found that the putative metallothionein of Pseudomonas aeruginosa PAO1 has 1 metal-binding cluster with 10 amino acids and the most important amino acid residue is Cysteine . Even though, there was 1 Histidine amino acid residue on the metal-binding cluster.


Keywords


metallothionein, metal biosorber, protein modelling, Pseudomonas aeruginosa PAO1

Full Text:

PDF

References


Ali Redha, A. (2020). Removal of Heavy Metals from Aqueous Media by Biosorption. Arab Journal of Basic and Applied Sciences, 27(1), 183–193. DOI: 10.1080/25765299.2020.1756177.

Amar, A., Castro, C., Bernardelli, C.,Costa, C. S. & Donati, E. (2021). Influence of UVA Radiation on Growth, Biofilm Formation and Bioleaching Capacity of Leptospirillum ferrooxidans. Hydrometallurgy, 201, 105574. DOI: 10.1016/j.hydromet.2021.105574.

Baniasadi, M., Vakilchap, F., Bahaloo-Horeh, N., Mousavi, S. M. & Farnaud, S. (2019). Advances in Bioleaching as a Sustainable Method for Metal Recovery from E-Waste: A Review. Journal of Industrial and Engineering Chemistry, 76, 75–90. DOI: 10.1016/j.jiec.2019.03.047.

Barghouthi, S. A. (2011). A Universal Method for The Identification of Bacteria Based on General PCR Primers. Indian Journal of Microbiology, 51(4), 430–444. DOI: 10.1007/s12088-011-0122-5.Benkert, P., Biasini, M. & Schwede, T. (2011). Toward The Estimation of The Absolute Quality of Individual Protein Structure Models. Bioinformatics, 27(3), 343–350. DOI: 10.1093/bioinformatics/btq662

Biasini, M., Bienert, S., Waterhouse, A., Arnold, K., Studer, G., Schmidt, T., Kiefer, F., Cassarino, T. G., Bertoni, M., Bordoli, L. & Schwede, T. (2014). SWISS-MODEL: Modelling Protein Tertiary and Quaternary Structure Using Evolutionary Information. Nucleic Acids Research, 42(W1), 1–7. DOI: 10.1093/nar/gku340.

Biasini, M., Schmidt, T., Bienert, S., Mariani, V., Studer, G., Haas, J., Johner, N., Schenk, A. D., Philippsen, A. & Schwede, T. (2013). OpenStructure: An Integrated Software Framework for Computational Structural Biology. Acta Crystallographica Section D: Biological Crystallography, 69(5), 701–709. DOI: 10.1107/S0907444913007051.

Blindauer, C. A. (2009). Bacterial Metallothioneins. In A. Sigel, H. Sigel, & R. K. Sigel (Eds.), Metallothioneins and Related Chelators (Volume 5) (Metal Ions in Life Sciences) (pp. 51–81). RSC Publishing. DOI: 10.1515/9783112321287.

Blindauer, C. A. (2011). Bacterial Metallothioneins: Past, Present, and Questions for The Future. Journal of Biological Inorganic Chemistry, 16(7), 1011–1024. DOI: 10.1007/s00775-011-0790-y.

Blindauer, C. A., Razi, M. T., Campopiano, D. J. & Sadler, P. J. (2007). Histidine Ligands in Bacterial Metallothionein Enhance Cluster Stability. Journal of Biological Inorganic Chemistry, 12(3), 393–405. DOI: 10.1007/s00775-006-0196-4.

Bosecker, K. (1997). Bioleaching: Metal Solubilization by Microorganisms. FEMS Microbiology Reviews, 20(3–4), 591–604. DOI: 10.1016/S0168-6445(97)00036-3.

Chatterjee, S., Kumari, S., Rath, S., Priyadarshanee, M. & Das, S. (2020). Diversity, Structure and Regulation of Microbial Metallothionein: Metal Resistance and Possible Applications in Sequestration of Toxic Metals. Metallomics, 12(11), 1637–1655. DOI: 10.1039/d0mt00140f.

Chen, V. B., Arendall, W. B., Headd, J. J., Keedy, D. A., Immormino, R. M., Kapral, G. J., Murray, L. W., Richardson, J. S. & Richardson, D. C. (2010). MolProbity: All-Atom Structure Validation for Macromolecular Crystallography. Acta Crystallographica Section D: Biological Crystallography, 66(1), 12–21. DOI: 10.1107/S0907444909042073.

Chen, X., Tian, Z., Cheng, H., Xu, G. & Zhou, H. (2021). Adsorption Process and Mechanism of Heavy Metal Ions by Different Components of Cells, Using Yeast (Pichia pastoris) and Cu2+ as Biosorption models. RSC Advances, 11(28), 17080–17091. https://doi.org/10.1039/d0ra09744f.

Choi, S. B. & Yun, Y. S. (2004). Lead Biosorption by Waste Biomass of Corynebacterium glutamicum Generated from Lysine Fermentation Process. Biotechnology Letters, 26(4), 331–336. DOI: 10.1023/B:BILE.0000015453.20708.fc.

Choudhuri, S. (2014). Binformatics For Beginners: Genes, Genomes, Molecular Evolution, Databases and Analytical Tools. Elsevier Inc.

Chudobova, D., Dostalova, S., Blazkova, I., Michalek, P., Ruttkay-Nedecky, B., Sklenar, M., Nejdl, L., Kudr, J., Gumulec, J., Tmejova, K., Konecna, M., Vaculovicova, M., Hynek, D., Masarik, M., Kynicky, J., Kizek, R. & Adam, V. (2014). Effect of Ampicillin, Streptomycin, Penicillin and Tetracycline on Metal Resistant and Non-Resistant Staphylococcus aureus. International Journal of Environmental Research and Public Health, 11(3), 3233–3255. DOI: 10.3390/ijerph110303233.

Dale, J. W. & Park, S. F. (2004). Molecular Genetics of Bacteria (4th ed.). John Wiley & Sons, Ltd.

Dopson, M. & Okibe, N. (2023). Biomining Microorganisms: Diversity and Modus Operandi. In D. B. Johnson, C. G. Bryan, M. Schlomann, & F. F. Roberto (Eds.), Biomining Technologies Extracting and Recovering Metals from Ores and Waste (1st ed., p. 90). Springer. DOI: 10.1007/978-3-031-05382-5.

El-Naggar, N. E. A., El-khateeb, A. Y., Ghoniem, A. A., El-Hersh, M. S. & Saber, W. E. I. A. (2020). Innovative Low-Cost Biosorption Process of Cr6+ by Pseudomonas alcaliphila NEWG-2. Scientific Reports, 10(1). DOI: 10.1038/s41598-020-70473-5.

Giese, E. C., Silva, D. D. V., Costa, A. F. M., Almeida, S. G. C. & Dussán, K. J. (2020). Immobilized Microbial Nanoparticles for Biosorption. Critical Reviews in Biotechnology, 40(5), 653–666. DOI: 10.1080/07388551.2020.1751583.

Gold, B., Deng, H., Bryk, R., Vargas, D., Eliezer, D., Roberts, J., Jiang, X. & Nathan, C. (2008). Identification of A Copper-Binding Metallothionein in Pathogenic Mycobacteria. Nature Chemical Biology, 4(10), 609–616. DOI: 10.1038/nchembio.109.

Gutiérrez, J. C., Amaro, F., Díaz, S., De Francisco, P., Cubas, L. L. & Martín-González, A. (2011). Ciliate metallothioneins: Unique Microbial Eukaryotic Heavy-Metal-Binder Molecules. Journal of Biological Inorganic Chemistry, 16(7), 1025–1034. DOI: 10.1007/s00775-011-0820-9.

Gutiérrez, J. C., de Francisco, P., Amaro, F., Díaz, S. & Martín-González, A. (2019). Structural and Functional Diversity of Microbial Metallothionein Genes. Microbial Diversity in the Genomic Era, 387–407. DOI: 10.1016/B978-0-12-814849-5.00022-8.

Habjanic, J., Mathew, A., Eberl, L. & Freisinger, E. (2020). Deciphering The Enigmatic Function of Pseudomonas Metallothioneins Jelena. Frontiers in Microbiology, 11, 1–10.

Haq, R., Zaidi, S. K. & Shakoori, A. R. (1999). Cadmium Resistant Enterobacter Cloacae and Klebsiella sp. Isolated from Industrial Effluents and Their Possible Role in Cadmium Detoxification. World Journal of Microbiology and Biotechnology, 15(2), 249–254. DOI: 10.1023/A:1008893606707.

Hidalgo, J., Chung, R., Penkowa, M. & Vašák, M. (2009). Structure and Function of Vertebrate Metallothioneins. In A. Sigel, H. Sigel, & R. K. Sigel (Eds.), Metallothioneins and Related Chelators (Volume 5) (Metal Ions in Life Sciences) (pp. 279–317). RSC Publishing. DOI: 10.1039/9781847558992-00279.

Imron, M. F., Kurniawan, S. B., & Abdullah, S. R. S. (2021). Resistance of Bacteria Isolated from Leachate to Heavy Metals and The Removal of Hg by Pseudomonas aeruginosa strain FZ-2 at Different Salinity Levels in A Batch Biosorption System. Sustainable Environment Research, 31(1), 1–13. DOI: 10.1186/s42834-021-00088-6.

Ismail, H. D. (2022). Bioinformatics A Practical Guide to NCBI Databases and Sequence Alignments (Issue 1). CRC Press Taylor & Francis Group.

Kumari, S. & Das, S. (2019). Expression of Metallothionein Encoding Gene bmtA in Biofilm-Forming Marine Bacterium Pseudomonas aeruginosa N6P6 and Understanding its Involvement in Pb(II) Resistance and Bioremediation. Environmental Science and Pollution Research, 26(28), 28763–28774. DOI: 10.1007/s11356-019-05916-2.

Kurniawan, S. B., Imron, M. F. & Purwanti, I. F. (2019). Biosorption of Chromium by Living Cells of Azotobacter s8, Bacillus subtilis and Pseudomonas aeruginosa Using Batch System Reactor. Journal of Ecological Engineering, 20(6), 184–189. DOI: 10.12911/22998993/108629.

LaBauve, A. E. & Wargo, M. J. (2012). Growth and Laboratory Maintenance of Pseudomonas aeruginosa. Current Protocols in Microbiology, SUPPL. 25, 1–11. DOI: 10.1002/9780471729259.mc06e01s25.

Li, J., Zhang, B., Yang, M. & Lin, H. (2021). Bioleaching of Vanadium by Acidithiobacillus ferrooxidans from Vanadium-Bearing Resources: Performance and Mechanisms. Journal of Hazardous Materials, 125843. DOI: 10.1016/j.jhazmat.2021.125843.

Lin, S., Song, Y., Huo, Y., Wang, Q., Liu, X., Gao, Y., Fan, W. & Huo, M. (2021). Cu Transport and Distribution in Different Cellular Fractions of Klebsiella oxytoca strain CAV 1374. Journal of Hazardous Materials, 419, 126416. DOI: 10.1016/j.jhazmat.2021.126416.

Loa, J. D. A., Rivas-Castillo, A. M., García-Tejeda, L. A., Gómez-Ramírez, M., Rojas-Avelizapa, L. I. & Rojas-Avelizapa, N. G. (2021). Feasibility Study of Metal Bioleaching in a Gold-Rich Ore Sample by Acidithiobacillus thiooxidans DSM 26636. Transactions of the Indian Institute of Metals, 74(8), 1865–1872. DOI: 10.1007/s12666-021-02291-w.

Martinez, M. B., Hernandez, J. J., Domingues, J. Y. L., Galicia, S. B. N., Tozcano, L. J. M., Atonal, R. J., Espinosa, D. C. & Godinez, G. D. (2023). Potential Application of Fungal Biosorption and/or Bioaccumulation for The Bioremediation of Wastewater Contamination: A Review. Journal of Environmental Biology, 44, 135–145.

Murthy, S., Bali, G. & Sarangi, S. K. (2011). Effect of Lead on Metallothionein Concentration in Lead-Resistant Bacteria Bacillus cereus Isolated from Industrial Effluent. African Journal of Biotechnology, 10(71), 15966–15972. DOI: 10.5897/AJB11.1645.

Naik, M. M. & Dubey, S. K. (2013). Lead Resistant Bacteria: Lead Resistance Mechanisms, Their Applications in Lead Bioremediation And Biomonitoring. Ecotoxicology and Environmental Safety, 98, 1–7. DOI: 10.1016/j.ecoenv.2013.09.039.

Nokman, W., Benluvankar, V., Maria Packiam, S. & Vincent, S. (2019). Screening and Molecular Identification of Heavy Metal Resistant Pseudomonas putida S4 in Tannery Effluent Wastewater. Biocatalysis and Agricultural Biotechnology, 18, 101052. DOI: 10.1016/j.bcab.2019.101052.

Ord, J. I., Cort, S. & Maluenda, P. (2023). Biosorption of Heavy Metals with Algae : Critical Review of Its Application in Real Effluents. Sustainability, 15(6), 1–14.

Pham, V. H. T., Kim, J., Chang, S. & Chung, W. (2022). Bacterial Biosorbents, an Efficient Heavy Metals Green Clean-Up Strategy: Prospects, Challenges, and Opportunities. Microorganisms, 10(3), 1–16. DOI: 10.3390/microorganisms10030610.

Sharma, P., Pandey, A. K., Udayan, A., & Kumar, S. (2021). Role of Microbial Community and Metal-Binding Proteins in Phytoremediation of Heavy Metals from Industrial Wastewater. Bioresource Technology, 326.DOI: 10.1016/j.biortech.2021.124750.

Stover, C. K., Pham, X. Q., Erwin, A. L., Mizoguchi, S. D., Warrener, P., Hickey, M. J., Brinkman, F. S. L., Hufnagle, W. O., Kowallk, D. J., Lagrou, M., Garber, R. L., Goltry, L., Tolentino, E., Westbrock-Wadman, S., Yuan, Y., Brody, L. L., Coulter, S. N., Folger, K. R., Kas, A. & Olson, M. V. (2000). Complete Genome Sequence of Pseudomonas aeruginosa PAO1, An Opportunistic Pathogen. Nature, 406(6799), 959–964. DOI: 10.1038/35023079.

Sundramurthy, V. P., Rajoo, B., Srinivasan, N. R. & Kavitha, R. (2020). Bioleaching of Zn from Sphalerite Using Leptospirillum ferriphilum Isolate: Effect of Temperature and Kinetic Aspects. Applied Biological Chemistry, 63(1). DOI: 10.1186/s13765-020-00528-8.

Thareau, V., Déhais, P., Serizet, C., Hilson, P., Rouzé, P., & Aubourg, S. (2003). Automatic Design of Gene-Specific Sequence Tags for Genome-Wide Functional Studies. Bioinformatics, 19(17), 2191–2198. DOI: 10.1093/bioinformatics/btg286.

Therdkiattikul, N., Ratpukdi, T., Kidkhunthod, P., Chanlek, N. & Siripattanakul-Ratpukdi, S. (2020). Manganese-Contaminated Groundwater Treatment by Novel Bacterial Isolates: Kinetic Study and Mechanism Analysis Using Synchrotron-Based Techniques. Scientific Reports, 10(1). DOI: 10.1038/s41598-020-70355-w.

Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., De Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R. & Schwede, T. (2018). SWISS-MODEL: Homology Modelling of Protein Structures and Complexes. Nucleic Acids Research, 46(W1), W296–W303. DOI: 10.1093/nar/gky427.

Williams, C. J., Headd, J. J., Moriarty, N. W., Prisant, M. G., Videau, L. L., Deis, L. N., Verma, V., Keedy, D. A., Hintze, B. J., Chen, V. B., Jain, S., Lewis, S. M., Arendall, W. B., Snoeyink, J., Adams, P. D., Lovell, S. C., Richardson, J. S. & Richardson, D. C. (2018). MolProbity: More and Better Reference Data for Improved All-Atom Structure Validation. Protein Science, 27(1), 293–315. DOI: 10.1002/pro.3330.




DOI: https://doi.org/10.15575/biodjati.v8i2.29170

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Jurnal Biodjati

License URL: https://creativecommons.org/licenses/by-nc-nd/4.0/

Indexing By :

      

      

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 

View My Stats