In Silico Study: ACE Inhibitory Activity as a Marine Animal Fatty Acid Antihypertensive Candidate

Maharani Dyah Arumsari(1), Ahmad Misbakhus Sururi(2), Excelino Hendrata(3), Rahmadian Kahfi Zulfa Kamila(4), Dhea Mutiara Fernanda Wibowo(5), Luluatul Fajriyah(6), Dwi Anggorowati Rahayu(7*)

(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, State University of Surabaya , Ketintang, Sub. Gayungan, Surabaya City, Indonesia
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, State University of Surabaya , Ketintang, Sub. Gayungan, Surabaya City, Indonesia
(3) Department of Chemistry, Faculty of Mathematics and Natural Sciences, State University of Surabaya , Ketintang, Sub. Gayungan, Surabaya City, Indonesia
(4) Department of Chemistry, Faculty of Mathematics and Natural Sciences, State University of Surabaya , Ketintang, Sub. Gayungan, Surabaya City, Indonesia
(5) Department of Chemistry, Faculty of Mathematics and Natural Sciences, State University of Surabaya , Ketintang, Sub. Gayungan, Surabaya City, Indonesia
(6) Department of Biology, Faculty of Mathematics and Natural Sciences, State University of Surabaya , Ketintang, Sub. Gayungan, Surabaya City, Indonesia
(7) Department of Biology, Faculty of Mathematics and Natural Sciences, State University of Surabaya , Ketintang, Sub. Gayungan, Surabaya City, Indonesia
(*) Corresponding Author


Marine life has much potential for development, especially in the medical field. Its main content is fatty acids, where fatty acids have potential as antihypertensive agents. This research aims to determine the potential of the primary fatty acids in marine biota as antihypertensive agents through an in-silico approach using molecular docking. This study uses the Angiotensin Converting Enzyme (ACE) receptor as the target protein and fatty acid ligands (myristic acid, pentadecanoic acid, eicosapentaenoic acid, linoleic acid, vaccenic acid, 11-eicosenoic acid, palmitic acid), and the control drug captopril for comparison. The initial stages of the research include protein and ligand preparation, followed by molecular docking and visualization. Potential compounds were then analyzed with Lipinski drug-likeness and PASSOnline. The research results show that eicosapentaenoic acid and linoleic acid have the potential as ACE inhibitors. PASSOnline predictions indicate that both had a high probability of being vasodilator agents. Therefore, these two fatty acids had the potential as antihypertensive agents. Further research is needed through in vitro and in vivo testing to utilize marine biota in the medical world.


in silico, fatty acid, hypertension, vasodilator agent, antihypertension

Full Text:



Agu, P. C., Afiukwa, C. A., Orji, O. U., Ezeh, E. M., Ofoke, I. H., Ogbu, C. O., Ugwuja, E. I., & Aja, P. M. (2023). Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management. Scientific Reports, 13(1), 13398.

Andhiarto, Y., & Praditapuspa, E. N. (2022). In Silico Analysis and ADMET Prediction of Flavonoid Compounds from Syzigium cumini var. album on α-Glucosidase Receptor for Searching Anti-Diabetic Drug Candidates. Pharmacognosy Journal, 14(6), 736–743.

Arrosyadi, U. L., Astutik, Y. D. P., Pradana, H. A., Islamianti, A. C., & Marfuah, S. (2016). Aktivitas Antioksidan dan Efek Antihipertensi Kopi Rendah Kafein Berantioksidan (Komik Aksi) Sebagai Minuman Fungsional. Jember: Fakultas Teknologi Pertanian, Universitas Jember.

Awaluddin, F., Batubara, I., & Tri Wahyudi, S. (2023). Virtual Screening of Natural Compounds Against Six Protein Receptors Coded by The SARS-CoV-2 Genome. Molekul; Vol 18 No 1 (2023)DO - 10.20884/1.Jm.2023.18.1.7884 .

Brogi, S., Ramalho, T. C., Kuca, K., Medina-Franco, J. L., & Valko, M. (2020). In silico methods for drug design and discovery. In Frontiers in chemistry (Vol. 8, p. 612). Frontiers Media SA.

Chen, L., Liu, T., Zhang, W., Chen, X., & Wang, J. (2012). Biodiesel production from algae oil high in free fatty acids by two-step catalytic conversion. Bioresource Technology, 111, 208–214.

Cheng, X., Shkel, I. A., O’Connor, K., & Record, M. T. (2020). Experimentally determined strengths of favorable and unfavorable interactions of amide atoms involved in protein self-assembly in water. Proceedings of the National Academy of Sciences, 117(44), 27339 LP – 27345.

Cutrell, S., Alhomoud, I. S., Mehta, A., Talasaz, A. H., Van Tassell, B., & Dixon, D. L. (2023). ACE-Inhibitors in Hypertension: A Historical Perspective and Current Insights. Current Hypertension Reports, 1–8.

Djuricic, I., & Calder, P. C. (2021). Beneficial outcomes of omega-6 and omega-3 polyunsaturated fatty acids on human health: An update for 2021. Nutrients, 13(7), 2421.

Ezzahraoui, R., Salmi, N., El Ouartassi, H., Bourouhou, Z., & Cherti, M. (2023). ACE Inhibitors-Induced Skin Reaction: A Case Report. Research and Analysis Journal, 6(8), 1–3.

Głowacki, E. D., Irimia-Vladu, M., Bauer, S., & Sariciftci, N. S. (2013). Hydrogen-bonds in molecular solids – from biological systems to organic electronics. Journal of Materials Chemistry B, 1(31), 3742–3753.

Helmer, A., Slater, N., & Smithgall, S. (2018). A review of ACE inhibitors and ARBs in black patients with hypertension. Annals of Pharmacotherapy, 52(11), 1143–1151.

Jayaram, B., Singh, T., Mukherjee, G., Mathur, A., Shekhar, S., & Shekhar, V. (2012). Sanjeevini: a freely accessible web-server for target directed lead molecule discovery. BMC Bioinformatics, 13(17), 1–13.

Kemenkes, R. I. (2019). Buku Pedoman Manajemen Penyakit Tidak Menular. Jakarta: Kementerian Kesehatan Republik Indonesia.

Kharisma, V., Widyananda, M., Nege, A., Naw, S., & Nugraha, A. (2021). Tea catechin as antiviral agent via apoptosis agonist and triple inhibitor mechanism against HIV-1 infection: A bioinformatics approach. Journal of Pharmacy & Pharmacognosy Research, 9, 435–445.

Kheeree, N., Sangtanoo, P., Srimongkol, P., Saisavoey, T., Reamtong, O., Choowongkomon, K., & Karnchanatat, A. (2020). ACE inhibitory peptides derived from de-fatted lemon basil seeds: Optimization, purification, identification, structure–activity relationship and molecular docking analysis. Food & Function, 11(9), 8161–8178.

Kim, Y.-K., Kim, Y. A., Shin, S. B., Lee, T. S., & Yoon, H.-D. (2015). Angiotensin-I converting enzyme fatty acid inhibitory fractions from the Korean melania snail Semisulcospira coreana. Food Science and Biotechnology, 24, 681–688.

Kulkarni, S., Singh, Y., Biharee, A., Bhatia, N., Monga, V., & Thareja, S. (2023). Molecular docking, 3D-QSAR and simulation studies for identifying pharmacophoric features of indole derivatives as 17β-hydroxysteroid dehydrogenase type 5 (17β-HSD5) inhibitors. Journal of Biomolecular Structure and Dynamics, 1–18.

Kumar Sethukali, A., & Darshaka Jayasena, D. (2022). Fatty Acid Profiles of Venus Clam (Marcia opima) and Blood Cockles (Anadara granosa) Harvested at Different Geographical Locations in the Northwest Coast of Sri Lanka. Journal of Aquatic Food Product Technology, 31(4), 311–320.

Kurniawan, I., & Sulaiman, S. (2019). Hubungan Olahraga, Stress dan Pola Makan dengan Tingkat Hipertensi di Posyandu Lansia di Kelurahan Sudirejo I Kecamatan Medan Kota. Journal of Health Science and Physiotherapy, 1(1), 10–17.

Lagunin, A., Stepanchikova, A., Filimonov, D., & Poroikov, V. (2000). PASS: prediction of activity spectra for biologically active substances. Bioinformatics, 16(8), 747–748.

Lee, S. H., Ok, S.-H., Kim, J.-Y., Subbarao, R. B., Bae, S. Il, Hwang, Y., Park, K.-E., Kim, J. W., & Sohn, J.-T. (2019). Linolenic acid attenuates the vasodilation induced by acetylcholine in isolated rat aortae. Dose-Response, 17(4), 1559325819894148.

Lipinski, C. A. (2004). Lead- and drug-like compounds: the rule-of-five revolution. Drug Discovery Today: Technologies, 1(4), 337–341.

Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings1PII of original article: S0169-409X(96)00423-1. The article was originally published in Advanced Drug Delivery Reviews 23 (1997) 3. Advanced Drug Delivery Reviews, 46(1), 3–26.

Nugroho, E. D., Ardiansyah, R., Kurniawan, N., Rahayu, A., & Sururi, A. M. (2023). An in-silico study on the chemical compounds from Macrophiothrix longipedia as antiviral compounds against covid-19. 16(4), 2380–2390.

Organization, W. H. (2023). Global report on hypertension: the race against a silent killer.

Pekkoh, J., Phinyo, K., Thurakit, T., Lomakool, S., Duangjan, K., Ruangrit, K., Pumas, C., Jiranusornkul, S., Yooin, W., & Cheirsilp, B. (2022). Lipid profile, antioxidant and antihypertensive activity, and computational molecular docking of diatom fatty acids as ACE inhibitors. Antioxidants, 11(2), 186.

Pires, D. E. V, Kaminskas, L. M., & Ascher, D. B. (2018). Prediction and optimization of pharmacokinetic and toxicity properties of the ligand. In Computational drug discovery and design (pp. 271–284). Springer.

Pradeepkiran, J. A., Yellapu, N. K., & Matcha, B. (2016). Modeling, molecular docking, probing catalytic binding mode of acetyl-CoA malate synthase G in Brucella melitensis 16M. Biochemistry and Biophysics Reports.

Rahmaningsih, S., & Pujiastutik, H. (2019). An in vitro and in silico evaluation of the antibacterial activity of the bioactive compounds in Majapahit (Crescentia cujete L.) fruit. Veterinary World, 12(12), 1959–1965.

Sari, M. L., Probosari, E., & Wijayanti, H. S. (2017). Hubungan Asupan Asam Lemak Omega-3 Dan Omega-6 Dengan Tekanan Darah Wanita Usia 30–50 Tahun. Journal of Nutrition College, 6(4), 313–318.

Sururi, A. M., Maharani, D. K., & Wati, F. A. (2023). POTENSI SENYAWA EUGENOL DARI CENGKEH (Syzygium aromaticum) SEBAGAI INHIBITOR PROTEASE HIV-1 (PR). Unesa Journal of Chemistry, Vol 12 No 1 (2023), 26–30.

Sururi, A. M., Raihan, M., Aisa, E. R., Safitri, F. N., & Constaty, I. C. (2022). Anti-Inflammatory Activity of Stem Bark Dichloromethane Fraction Syzygium samarangense Extract as COX-2 Inhibitor: A Bioinformatics Approach. Jurnal Kimia Riset, 7(2), 94–100.

Sururi, A. M., Tukiran, T., Aisa, E. R., & Raihan, M. (2024). Identification of bioactive compounds and ADMET profile of stem bark of Syzygium samarangense and their potential as antibreast cancer and antiinflammatory. Journal of Applied Pharmaceutical Science, 14(2), 273–280.

Trott, O., & Olson, A. J. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461.

Unger, T., Borghi, C., Charchar, F., Khan, N. A., Poulter, N. R., Prabhakaran, D., Ramirez, A., Schlaich, M., Stergiou, G. S., & Tomaszewski, M. (2020). 2020 International Society of Hypertension global hypertension practice guidelines. Hypertension, 75(6), 1334–1357.

Wang, Y., Li, Y., Ruan, S., Lu, F., Tian, W., & Ma, H. (2021). Antihypertensive effect of rapeseed peptides and their potential in improving the effectiveness of captopril. Journal of the Science of Food and Agriculture, 101(7), 3049–3055.

Wicaksono, A., Listyana, Y. I., Kesuma, A. A. M., & Fauziyah, H. N. N. (2021). Resiko Penggunaan Captopril terhadap Kejadian Batuk Kering pada Pasien Hipertensi. Jurnal Pendidikan Tambusai, 5(3), 11315–11322.

Zhang, S., Liu, Y., Wang, X., Tian, Z., Qi, D., Li, Y., & Jiang, H. (2020). Antihypertensive activity of oleanolic acid is mediated via downregulation of secretory phospholipase A2 and fatty acid synthase in spontaneously hypertensive rats. International Journal of Molecular Medicine, 46(6), 2019–2034.



  • There are currently no refbacks.

Copyright (c) 2024 Jurnal Biodjati

License URL:

Indexing By :



Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


View My Stats