Relation of Soil Physical Parameters and Dominant Vegetation with Infiltration Capacity in Latuppa Sub-Watershed Palopo Indonesia


Witno Witno(1*), Yumna Yumna(2), Abdul Rahim(3)

(1) Forestry of Faculty, Andi Djemma University, Wara Regency, Palopo, Indonesia
(2) Forestry of Faculty, Andi Djemma University, Wara Regency, Palopo, Indonesia
(3) Forestry of Faculty, Andi Djemma University, Wara Regency, Palopo, Indonesia
(*) Corresponding Author

Abstract


The inflitration capacity is the soil’s ability to accommodate water that seeps into the soil, reducing surface runoff that will cause flooding, such as in the downstream area of Palopo city. This study aimed to determine the influence of dominant vegetation and soil physical characteristics on infiltration in the upstream area of the Latuppa Sub-Das, Mungkajang District, Palopo city. Data collection was carried out by direct observation in the 2yumnaunanda588@gmail.com field in a purposive manner in 10 plots, which represent the condition of vegetation in the upstream area of the Latuppa watershed, and each plot consisted of 3 replications to observe infiltration and soil samples. The data were analyzed via the rational method, the Horton method, and vegetation index analysis. Additionally, the data were analyzed via simple linear regression and multiple regression analysis to determine the influence of the dominant vegetation and physical characteristics of the soil on the infiltration capacity. The highest infiltration capacity was found in plot 10, with an infiltration capacity of 107.5 mm/minute (6,450 mm/hour) and an average infiltration rate of 0.4 mm/minute (24 mm/hour). The dominant vegetation cover is Cananga odorata, with a vegetation index value of 78.41%. Plot 10 has a height of 362.79 masl, a gentle slope, a crumbly soil structure, a clay sand texture, a very high soil density and 2.10% organic matter. Based on observations and data analysis, the factors that influence the infiltration capacity in the upstream area of the Latuppa subwatershed are vegetation conditions, altitude, slope and physical properties of the soil.


Keywords


Infiltration Capacity, Soil Physical Characteristics, Vegetation Dominant

Full Text:

PDF

References


Asdak, C. 2007. Hydrology and Watershed Management. Gadjah Mada University Press.

Ali, F., Khan, N., Abd_allah, E. F., & Ahmad, A. (2022). Species Diversity, Growing Stock Variables and Carbon Mitigation Potential in the Phytocoenosis of Monotheca buxifolia Forests along Altitudinal Gradient across Pakistan. Applied Sciences (Switzerland), 12(3). https://doi.org/10.3390/app12031292

Avia, L. Q. (2019). Change in rainfall per-decades over Java Island, Indonesia. IOP Conference Series: Earth and Environmental Science, 374(1). https://doi.org/10.1088/1755-1315/374/1/012037

Beven, K. (2018). A Century of Denial: Preferential and Nonequilibrium Water Flow in Soils, 1864‐1984. Vadose Zone Journal, 17(1), 1–17. https://doi.org/10.2136/vzj2018.08.0153

Bojko, O., & Kabala, C. (2016). Transformation of physicochemical soil properties along a mountain slope due to land management and climate changes - A case study from the Karkonosze Mountains, SW Poland. Catena, 140, 43–54. https://doi.org/10.1016/j.catena.2016.01.015

Chiou, C. T., Lee, J. F., & Boyd, S. A. (1990). The Surface Area of Soil Organic Matter. Environmental Science and Technology, 24(8), 1164–1166. https://doi.org/10.1021/es00078a002

Dong, J., & Ochsner, T. E. (2018). Soil Texture Often Exerts a Stronger Influence Than Precipitation on Mesoscale Soil Moisture Patterns. Water Resources Research, 54(3), 2199–2211. https://doi.org/10.1002/2017WR021692

Endarwati, M. A., Wicaksono, K. S., & Suprayogo, D. (2017). Vegetation Biodiversity and Ecosystem Function: The Relationship Between Density, Vegetation Diversity, and Soil Infiltration in Inceptisols on the Slopes of Gunung Kawi, Malang. Jurnal Tanah Dan Sumberdaya Lahan, 4(2), 577–588.

Fischer, C., Tischer, J., Roscher, C., Eisenhauer, N., Ravenek, J., Gleixner, G., Attinger, S., Jensen, B., de Kroon, H., Mommer, L., Scheu, S., & Hildebrandt, A. (2015). Plant species diversity affects infiltration capacity in an experimental grassland through changes in soil properties. Plant and Soil, 397(1–2), 1–16. https://doi.org/10.1007/s11104-014-2373-5

Ganamé, M., Bayen, P., Ouédraogo, I., Dimobe, K., & Thiombiano, A. (2019). Woody species composition, diversity and vegetation structure of two protected areas along a climatic gradient in Burkina Faso (West Africa). Folia Geobotanica, 54(3–4), 163–175. https://doi.org/10.1007/s12224-019-09340-9

Gunawan, W., Basuni, S., Indrawan, A., Prasetyo, L. B., & Soedjito, H. (2012). Analysis of Vegetation Structure and Composition toward Restoration Efforts of Gunung Gede Pangrango National Park Forest Area Departemen. Jurnal Pengelolaan Sumberdaya Alam Dan Lingkungan, 1(2), 93–105.

Guo, L., Su, N., Zhu, C., & He, Q. (2018). How have the river discharges and sediment loads changed in the Changjiang River basin downstream of the Three Gorges Dam? Journal of Hydrology, 560, 259–274. https://doi.org/10.1016/j.jhydrol.2018.03.035

Haghnazari, F., Shahgholi, H., & Feizi, M. (2015). Factors affecting the infiltration of agricultural soils: review. International Journal of Agronomy and Agricultural Research (IJAAR), 6(5), 21–35. http://www.innspub.net

Hairiah, K., Sulistyani, H., Suprayogo, D., Widianto, Purnomosidhi, P., Widodo, R. H., & Van Noordwijk, M. (2006). Litter layer residence time in forest and coffee agroforestry systems in Sumberjaya, West Lampung. Forest Ecology and Management, 224(1–2), 45–57. https://doi.org/10.1016/j.foreco.2005.12.007

Hairiah, K., Suprayogo, D., Widianto, Berlian, Suhara, E., Mardiastuning, A., Widodo, R. H., Prayogo, C., & Rahayu, S. (2004). Alih Guna Lahan Hutan menjadi Lahan Agroforestri Berbasis Kopi: ketebalan seresah, populasi cacing tanah dan makroporositas tanah. Agrivita, 26(1), 68–80. http://karyailmiah.fp.ub.ac.id/fp/wp-content/uploads/2014/09/Agrivita-vol-26-no-1-Maret-2004_4.pdf

Hapsari, R. I., & Zenurianto, M. (2016). View of Flood Disaster Management in Indonesia and the Key Solutions. American Journal of Engineering Research (AJER), 5, 140–151. www.ajer.org

Holilullah, Afandi, & Novpriansyah, H. (2015). Characteristics Of Soil Physical Properties On Low And High Production Lands In Pt Great Giant Pineapple. Jurnal Agrotek Tropika, 3(2), 278–282.

Huang, J., Wu, P., & Zhao, X. (2013). Effects of rainfall intensity, underlying surface and slope gradient on soil infiltration under simulated rainfall experiments. Catena, 104, 93–102. https://doi.org/10.1016/j.catena.2012.10.013

Isa, N., Razak, S. A., Abdullah, R., Khan, M. N., Hamzah, S. N.,

Kaplan, A., Dossou-Yovo, H. O., Ali, B., Razzaq, A., Wahab, S., Ullah, I., El-Sheikh, M. A., & Marc, R. A. (2023). Relationship between the Floristic Composition and Soil Characteristics of a Tropical Rainforest (TRF). Forests, 14(2), 1–16. https://doi.org/10.3390/f14020306

Jaconi, A., Vos, C., & Don, A. (2019). Near infrared spectroscopy as an easy and precise method to estimate soil texture. Geoderma, 337(October 2018), 906–913. https://doi.org/10.1016/j.geoderma.2018.10.038

Jarvis, N. J. (2007). A review of non-equilibrium water flow and solute transport in soil macropores: Principles, controlling factors and consequences for water quality. European Journal of Soil Science, 58(3), 523–546. https://doi.org/10.1111/j.1365-2389.2007.00915.x

Jim, C. Y., & Ng, Y. Y. (2018). Porosity of roadside soil as indicator of edaphic quality for tree planting. Ecological Engineering, 120(February), 364–374. https://doi.org/10.1016/j.ecoleng.2018.06.016

Kusparadini, H., Putri, A. S., & Diana, R. (2018). Potensi Tumbuhan Genus Litsea.

Lefroy, E. T. C. and R. D. B. (2002). The role and function of organic matter in tropical soils E.T. Nutrient Cycling in Agroecosystems, 61(3), 7–18. https://doi.org/10.1023/A

Lin, W., Liu, A., Mao, W., & Koseki, J. (2020). Acoustic emission behavior of granular soils with various ground conditions in drained triaxial compression tests. Soils and Foundations, 60(4), 929–943. https://doi.org/10.1016/j.sandf.2020.06.002

Liu, Y., Cui, Z., Huang, Z., López-Vicente, M., & Wu, G. L. (2019). Influence of soil moisture and plant roots on the soil infiltration capacity at different stages in arid grasslands of China. Catena, 182(January 2018). https://doi.org/10.1016/j.catena.2019.104147

Manandhar, S., Pratoomchai, W., Ono, K., Kazama, S., & Komori, D. (2015). Local people’s perceptions of climate change and related hazards in mountainous areas of northern Thailand. International Journal of Disaster Risk Reduction, 11, 47–59. https://doi.org/10.1016/j.ijdrr.2014.11.002

Molla, A., Skoufogianni, E., Lolas, A., & Skordas, K. (2022). The Impact of Different Cultivation Practices on Surface Runoff, Soil and Nutrient Losses in a Rotational System of Legume–Cereal and

Sunflower. Plants, 11(24). https://doi.org/10.3390/plants11243513

Nurmegawati, W. Wibawa, E.Makruf , D. Sugandi, dan T. R. (2012). Fertility Level And Recommendations For Fertilization Of N, P, And K Rice Soils Of South Bengkulu Regency. J. Solum, IX(2), 11–18.

Peth, S., Chenu, C., Leblond, N., Mordhorst, A., Garnier, P., Nunan, N., Pot, V., Ogurreck, M., & Beckmann, F. (2014). Localization of soil organic matter in soil aggregates using synchrotron-based X-ray microtomography. Soil Biology and Biochemistry, 78, 189–194. https://doi.org/10.1016/j.soilbio.2014.07.024

Phi Hoang, L., Lauri, H., Kummu, M., Koponen, J., Vliet, M. T. H. V., Supit, I., Leemans, R., Kabat, P., & Ludwig, F. (2016). Mekong River flow and hydrological extremes under climate change. Hydrology and Earth System Sciences, 20(7), 3027–3041. https://doi.org/10.5194/hess-20-3027-2016

Qur’ani, N. P. G., Harisuseno, D., & Fidari, J. S. (2022). Study of the Influence of Slope Slope on Infiltration Rate. Jurnal Teknologi Dan Rekayasa Sumber Daya Air, 2(1), 1–254. https://doi.org/10.21776/ub.jtresda.2022.002.01.19

Saputra, D. D., Sari, R. R., Hairiah, K., Widianto, Suprayogo, D., & van Noordwijk, M. (2022). Recovery after volcanic ash deposition: vegetation effects on soil organic carbon, soil structure and infiltration rates. Plant and Soil, 474(1–2), 163–179. https://doi.org/10.1007/s11104-022-05322-7

Seiwa, K., Kunii, D., Masaka, K., Hayashi, S., & Tada, C. (2021). Hardwood mixture enhances soil water infiltration in a conifer plantation. Forest Ecology and Management, 498(February), 119508. https://doi.org/10.1016/j.foreco.2021.119508

Shah, A. N., Tanveer, M., Shahzad, B., Yang, G., Fahad, S., Ali, S., Bukhari, M. A., Tung, S. A., Hafeez, A., & Souliyanonh, B. (2017). Soil compaction effects on soil health and cropproductivity: an overview. Environmental Science and Pollution Research, 24(11), 10056–10067. https://doi.org/10.1007/s11356-017-8421-y

Shao, Q., & Baumgartl, T. (2014). Estimating Input Parameters for Four Infiltration Models from Basic Soil, Vegetation, and Rainfall Properties. Soil Science Society of America Journal, 78(5), 1507–1521. https://doi.org/10.2136/sssaj2014.04.0122

Sharma, R., & Malaviya, P. (2021). Management of stormwater pollution using green infrastructure: The role of rain gardens. Wiley Interdisciplinary Reviews: Water, 8(2), 1–21. https://doi.org/10.1002/wat2.1507

Suharto, E. (2006). Ground water storage capacity in the Land Use System of LPP Tahura Raja Lelo Bengkulu. Jipi, 8(1), 44–49.

Sukisno, S., Widiatmaka, W., Purwanto, M. Y. J., Noorachmat, B. P., & Munibah, K. (2023). The prediction of land use and land cover change and its impact on soil erosion and sedimentation in the Musi Hydropower-Plant catchment area in Bengkulu Province. Journal of Degraded and Mining Lands Management, 10(4), 4629. https://doi.org/10.15243/jdmlm.2023.104.4629

Suripin, S., & Kurniani, D. (2016). The Influence of Climate Change on the Flood Hydrograph in the East Flood Canal of Semarang City. Media Komunikasi Teknik Sipil, 22(2), 119. https://doi.org/10.14710/mkts.v22i2.12881

Susanawati, L. D., Rahadi, B., & Tauhid, Y. (2018). Determining the Infiltration Rate Using Double Ring Infiltrometer Measurements and Horton Model Calculations in a 55 Tangerine (Citrus Reticulata) Orchard in Selorejo Village, Malang Regency. Jurnal Sumberdaya Alam Dan Lingkungan, 5(2), 28–34. https://doi.org/10.21776/ub.jsal.2018.005.02.4

Tania Dwi Yolanda Putri, Dharmono, D., & Utami, N. H. (2022). Kajian Etnobotani Tumbuhan Sengkuang (Dracontomelon dao) di Desa Sabuhur Kecamatan Jorong Kabupaten Tanah Laut Sebagai Buku Ilmiah Populer. JUPEIS : Jurnal Pendidikan Dan Ilmu Sosial, 1(2), 33–42. https://doi.org/10.55784/jupeis.vol1.iss2.36

Vahedifard, F., Leshchinsky, D., Mortezaei, K., & Lu, N. (2016).

Effective Stress-Based Limit-Equilibrium Analysis for Homogeneous Unsaturated Slopes. International Journal of Geomechanics, 16(6), 1–10. https://doi.org/10.1061/(asce)gm.1943-5622.0000554

Widianto, Suprayogo, D., Noveras, H., Widodo, R. H., Purnomosidhi, P., & van Noordwijk, M. (2004). Converting Forest Land Into Agricultural Land: Can The Hydrological Function Of Forests Be Replaced By Monoculture Coffee Systems. Agrivita, 26, 52–57.

Xia, Q., Rufty, T., & Shi, W. (2020). Soil microbial diversity and composition: Links to soil texture and associated properties. Soil Biology and Biochemistry, 149, 107953. https://doi.org/10.1016/j.soilbio.2020.107953

Yang, S. R., & Huang, L. J. (2023). Infiltration and Failure Behavior of an Unsaturated Soil Slope under Artificial Rainfall Model Experiments. Water (Switzerland), 15(8). https://doi.org/10.3390/w15081599

Yu, X. N., Huang, Y. M., Li, E. G., Li, X. Y., & Guo, W. H. (2018). Effects of rainfall and vegetation to soil water input and output processes in the Mu Us Sandy Land, northwest China. Catena, 161(19), 96–103. https://doi.org/10.1016/j.catena.2017.10.023

Yumna, Prijono, S., Kusumah, Z., & Soemarno. (2019). Land Suitability Based on Specific Locations for Sago Palm (Metroxylon Sp.) in Rainfed Drylands in the Salu Paku Sub-Watershed, the Rongkong Upstream Watershed, North Luwu Regency of South Sulawesi, Indonesia. Russian Journal of Agricultural and Socio-Economic Sciences, 94(10), 7–19. https://doi.org/10.18551/rjoas.2019-10.02

Zhao, M., Wang, W., Ma, Z., Wang, Q., Wang, Z., Chen, L., & Fu, B. (2021). Soil water dynamics based on a contrastive experiment between vegetated and non-vegetated sites in a semiarid region in Northwest China. Journal of Hydrology, 603(PA), 126880. https://doi.org/10.1016/j.jhydrol.2021.126880

Zsolnay, Á. (2003). Dissolved organic matter: Artefacts, definitions, and functions. Geoderma, 113(3–4), 187–209. https://doi.org/10.1016/S0016-7061(02)00361-0




DOI: https://doi.org/10.15575/biodjati.v9i1.30580

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Jurnal Biodjati

License URL: https://creativecommons.org/licenses/by-nc-nd/4.0/

Indexing By :

      

      

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 

View My Stats