Weissella paramesenteroides: A Lactic Acid Bacteria Producing Glutathione from Fermented Vegetable Based Keciwis Leaf
DOI:
https://doi.org/10.15575/biodjati.v10i1.30589Keywords:
glutathione , keciwis , lactic acid bacteria , weissellaAbstract
Glutathione (GSH), is one of the essential antioxidants to prevent free radicals and support the immune system. The low level of glutathione is associated with some diseases such as cancer, Alzheimer's, Parkinson's, and AIDS. Lactic acid bacteria (LAB) can produce glutathione. Indonesia, as a mega biodiversity country, has various vegetables and LAB sources that remain underexplored. This research aims to explore LAB-producing glutathione from fermented products derived from Indonesia's typical plant, the keciwis leaf. The method of this research includes sample preparation, lactic acid bacteria isolation, secondary metabolite production with cysteine precursor addition, glutathione analysis by Ellman's assay, identification of 16S rRNA gene of lactic acid bacteria, and glutathione qualitative analysis by HPLC. Fermented keciwis leaf-based products contain lactic acid bacteria with positive gram characteristics, can produce 0.33 – 0.37 mM extracellular glutathione. Precursor cysteine addition significantly increases glutathione (p<0,05). The selective lactic acid bacteria producing glutathione was identified as belonging to the genus Weissella, with a similarity value of 98.50%, closely related to Weissella paramesenteroides. Extracellular glutathione produced by this culture showed qualitative results on HPLC with a retention time of 6.34 minutes, indicating the presence of the sulfihydryl group. This study identified a new Indonesia source of lactic acid bacteria of Indonesian–origin lactic acid bacteria, specifically Weissella paramesenteroides, as a promising source for glutathione production
References
Akihary, C. V., & Kolondam, B. J. (2020). Pemanfaatan gen 16s rRNA sebagai perangkat identifikasi bakteri untuk penelitian-penelitian di indonesia. Pharmacon, 9(1), 16. DOI: 10.35799/pha.9.2020.27405
Appala, R. N., Chigurupati, S., Appala, R. V. V. S. S., Selvarajan, K. K., & Mohammad, J. I. (2016). A Simple HPLC-UV Method for the Determination of Glutathione in PC-12 Cells. Scientifica. DOI: 10.1155/2016/6897890
Copley, S. D., & Dhillon, J. K. (2002). Lateral gene transfer and parallel evolution in the history of glutathione biosynthesis genes. Genome Biology 3(5): 1–16. DOI: 10.1186/gb-2002-3-5-research0025
Cribb, A. E., Leeder, J. S., & Spielberg, S. P. (1989). Use of a microplate reader in an assay of glutathione reductase using 5,5-dithiobis(2-nitrobenzoic acid). Analytical Biochemistry, 183(1), 195–196. DOI: 10.1016/0003-2697(89)90188-7
Diet, O., Gould, R. L., & Pazdro, R. (2019). Impact of Supplementary Amino Acids, Micronutrients, and Overall Diet on Glutathione Homeostasis.
Ellman, G. L. (1959). Tissue Su ~ yd ~ l Groups. 70–77.
Endang, S. R. (2018). Lactic acid bacteria in fermented food of Indonesian origin. In AgriTech 23(2), pp. 75–84).
Fernandes, L., & Steele, J. L. (1993). Glutathione Content of Lactic Acid Bacteria. Journal of Dairy Science, 76(5), 1233–1242. DOI: 10.3168/jds.S0022-0302(93)77452-4
Fusco, V., Quero, G. M., Cho, G. S., Kabisch, J., Meske, D., Neve, H., Bockelmann, W., & Franz, C. M. A. P. (2015). The genus Weissella: Taxonomy, ecology and biotechnological potential. Frontiers in Microbiology 6(MAR). DOI: 10.3389/fmicb.2015.00155
Gould, R. L., & Pazdro, R. (2019). Impact of Supplementary Amino Acids, Micronutrients, and Overall Diet on Glutathione Homeostasis.
Ji, K., Jang, N. Y., & Kim, Y. T. (2015). Isolation of lactic acid bacteria showing antioxidative and probiotic activities from kimchi and infant feces. Journal of Microbiology and Biotechnology, 25(9), 1568–1577. DOI: 10.4014/jmb.1501.01077
Jones, D. P. (2002). Redox potential of GSH/GSSG couple: Assay and biological significance. Methods in Enzymology 348(1999), 93–112. DOI: 10.1016/S0076-6879(02)48630-2
Kamboj, K., Vasquez, A., & Balada-Llasat, J. M. (2015). Identification and significance of Weissella species infections. Frontiers in Microbiology, 6(OCT), 1–7. DOI: 10.3389/fmicb.2015.01204
Kang, B. K., Cho, M. S., & Park, D. S. (2016). Red pepper powder is a crucial factor that influences the ontogeny of Weissella cibaria during kimchi fermentation. Scientific Reports, 6(May): 1–8. DOI: 10.1038/srep28232
Kim, E. K., Cha, C. J., Cho, Y. J., Cho, Y. B., & Roe, J. H. (2008). Synthesis of y-glutamylcysteine as a major low-molecular-weight thiol in lactic acid bacteria Leuconostoc spp. Biochemical and Biophysical Research Communications, 369(4), 1047–1051. DOI: 10.1016/j.bbrc.2008.02.139
Lonvaud-Funel, A. (2014). Leuconostocaceae Family. Encyclopedia of Food Microbiology, 455–465. DOI:10.1016/b978-0-12-384730-0.00185-3
Meidong, R., Doolgindachbaporn, S., & Sakai, K. (2017). Isolation and selection of lactic acid bacteria from Thai indigenous fermented foods for use as probiotics in tilapia fish Oreochromis niloticus. 10(2), 455–463.
Meister, A., & Anderson, M. E. (1983). GLUTATHIONE. Annual Review of Biochemistry, 52(1), 711–760. DOI: 10.1146/annurev.bi.52.070183.003431
Mozzi, F. (2015). Lactic Acid Bacteria. Encyclopedia of Food and Health, 501–508. DOI: 10.1016/B978-0-12-384947-2.00414-1
Pizzorno, J. Glutathione! Integr. Med. 2014, 13, 8–12
Pophaly, S. D., Singh, R., Pophaly, S. D., Kaushik, J. K., & Tomar, S. K. (2012). Current status and emerging role of glutathione in food grade lactic acid bacteria. Microbial Cell Factories, 11(1), 1. DOI: 10.1186/1475-2859-11-114
Rambitan, G., Pelealu, J. J., & Tallei, T. E. (2018). Isolasi dan identifikasi bakteri asam laktat hasil fermentasi kol merah (Brassica oleracea L.) sebagai probiotik potensial (Isolation and identification lactic acid bacteria from red cabbage (Brassica oleracea L.) fermentation as potential probiotic). Jurnal Bios Logos, 8(2), 33. DOI: 10.35799/jbl.8.2.2018.21447
Rollini, M., Musatti, A., & Manzoni, M. (2010). Production of glutathione in extracellular form by Saccharomyces cerevisiae. Process Biochemistry, 45(4), 441–445. DOI: 10.1016/j.procbio.2009.10.016
Schmacht, M., Lorenz, E., & Senz, M. (2017). Microbial production of glutathione. World Journal of Microbiology and Biotechnology, 33(6), 106–129. DOI: 10.1007/s11274-017-2277-7
Sousa, A. M., Machado, I., Nicolau, A., & Pereira, M. O. (2013). Improvements on colony morphology identification towards bacterial profiling. Journal of Microbiological Methods, 95(3), 327–335. DOI: 10.1016/j.mimet.2013.09.020
Teixeira, C. G., Fusieger, A., Milião, G. L., Martins, E., Drider, D., Nero, L. A., & de Carvalho, A. F. (2021). Weissella: An Emerging Bacterium with Promising Health Benefits. Probiotics and Antimicrobial Proteins, 13(4), 915–925. DOI: 10.1007/s12602-021-09751-1
Wang, D., Wang, C., Wu, H., Li, Z., & Ye, Q. (2016). Glutathione production by recombinant Escherichia coli expressing bifunctional glutathione synthetase. Journal of Industrial Microbiology and Biotechnology, 43(1), 45–53. DOI: 10.1007/s10295-015-1707-5
Yadav, M., Sunita, & Shukla, P. (2022). Probiotic potential of Weissella paramesenteroides MYPS5.1 isolated from customary dairy products and its therapeutic application. 3 Biotech, 12(1), 1–13. DOI: 10.1007/s13205-021-03074-2
Yoon, Y. H., & Byun, J. R. (2004). Occurrence of glutathione sulphydryl (GSH) and antioxidant activities in probiotic Lactobacillus spp. Asian-Australasian Journal of Animal Sciences, 17(11), DOI: 10.5713/ajas.2004.1582
Zheng, J., Wittouck, S., Salvetti, E., Franz, C. M., Harris, H. M., Mattarelli, P., ... & Lebeer, S. (2020). A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. International journal of systematic and evolutionary microbiology, 70(4), 2782-2858.
Downloads
Published
How to Cite
Issue
Section
Citation Check
License
Copyright (c) 2025 Jurnal Biodjati

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright and Attribution:
Copyright of published in Jurnal Biodjati is held by the journal under Creative Commons Attribution (CC-BY-NC-ND) copyright. The journal lets others distribute and copy the article, create extracts, abstracts, and other revised versions, adaptations or derivative works of or from an article (such as an tranlation), include in collective works (such as an anrhology), text or data mine the article, as long as they credit the author(s), do not represent the author as endorsing their adaptation of the article and do not modify the article in such a way as to damage the author's honor or reputation.
Permissions:
Authors wishing to include figures, tables, or text passages that have already been published elsewhere and by other authors are required to obtain permission from the copyright owner(s) for both the print and online format and to include evidence that such permission has been granted when submitting their papers. Any material received without such evidence will be assumed to originate of one of the authors.
Ethical matters:
Experiments with animals or involving human patients must have had prior approval from the appropriate ethics committee. A statement to this effect should be provided within the text at the appropriate place. Experiments involving plants or microorganisms taken from countries other than the authors own must have had the correct authorization for this exportation.
















