Stevia Local Tawangmangu Generation M1 Result of Oryzalin Treatment


Dian Susanti(1*), Parjanto Parjanto(2), Sari Haryanti(3)

(1) - Agronomy Master Degree, Agriculture Faculty, Sebelas Maret University - Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency, Indonesia
(2) - Agronomy Master Degree, Agriculture Faculty, Sebelas Maret University - Agrotechnology Study, Program Agriculture Faculty, Sebelas Maret University, Indonesia
(3) Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency, Indonesia
(*) Corresponding Author

Abstract


 Stevia rebaudiana Bert. (Stevia) is used in the commercial and health industries because of its steviol glycosides (stevioside, re­baudioside A, rebaudioside C) and flavonoids. Polyploidy induction of stevia plants using oryzalin was held to increase the diversity and produce superior varieties. This research aims to obtain stevia diver­sity with different characteristics from its diploid. The Tawangman­gu variety of stevia seedlings was experimentally designed using a completely random design. Nine combinations of oryzalin concentra­tions (1.5, 2.5, and 3.5μM) and immersion times (4, 6, and 8 hours) treatments were applied to 15 stevia seedlings each. Stevia without treatment was used as a control. Treatments were applied directly to the shoots on the second internode from the tip. Observations on tar­get shoots included the number of survivors, morphological variables (height, number of internodes, internode length, leaf size, leaf thick­ness, stem diameter, and leaf color), stomata, and plant ploidy level. Data analysis on the number of live plants used frequency and de­scriptively. Morphological data consisting of plant height, number of shoots, number of internodes, internode length, leaf length, leaf width, leaf thickness, and stem diameter were analyzed using boxplot graphs and descriptive to describe the diversity of M1 stevia treatment re­sults. Leaf color and stomata were analyzed descriptively. The results showed that up to 3.5μM concentrations of oryzalin and 6 hours of immersion time were safe to use as a mutation agent with above 67% survival rate. Various oryzalin treatments of Tawangmangu stevia va­rieties yielded polyploidy morphological growth indications in height, number of internodes, internode length, stem diameter, leaf size, leaf thickness, leaf color, stomata, and stem diameter. In addition, there are growth variations such as chimeras, rosettes, and leaf splitting. However, further flow cytometry tests showed that oryzalin concen­tration and immersion duration directly on the vegetative material did not produce polyploid stevia individuals.


Keywords


antimitotic, concentration, immersion time, microtubulin inhibitor, polyploidization.

Full Text:

PDF

References


Adabiyah, R., Ratnadewi, D., & Ermayanti, T. M. (2019). Evaluasi Pertumbuhan Stevia rebaudiana Bert. Tetraploid Secara In Vitro dan di Lapang untuk Produksi Steviosida dan Rebaudiosida-A. Jurnal Biologi Indonesia, 15(2), 153–165.

Amarakoon, S. (2021). Stevia rebaudiana-A review on agricultural, chemical and industrial applications. Journal of Nature and Applied Research, 1(1), 2792–1352. www.natark.com

Arunachalam, V., Salgaonkar, D. C., Kevat, N. V., Walawalkar, B. V., & Das, B. (2022). Quantification of betacyanin content variation of amaranth varieties by an Android App, colorimeter, and infrared spectroscopy. Chinese Journal of Analytical Chemistry, 50(10), 100145. https://doi.org/10.1016/j.cjac.2022.100145

Bae, S. J., Islam, M. M., Kim, H. Y., & Lim, K. B. (2020). Induction of Tetraploidy in Watermelon with Oryzalin Treatments. Horticultural Science and Technology, 38(3), 385–393. https://doi.org/https://doi.org/10.7235/HORT.20200037

Bharati, R., Fernández-Cusimamani, E., Gupta, A., Novy, P., Moses, O., Severová, L., Svoboda, R., & Šrédl, K. (2023). Oryzalin induces polyploids with superior morphology and increased levels of essential oil production in Mentha spicata L. Industrial Crops and Products, 198(2019), 116683. https://doi.org/10.1016/j.indcrop.2023.116683

Caruso, I., Piaz, F. D., Malafronte, N., De Tommasi, N., Aversano, R., Zottele, C. W., Scarano, M. T., & Carputo, D. (2013). Impact of ploidy change on secondary metabolites and photochemical efficiency in Solanum bulbocastanum. Natural Product Communications, 8(10), 1387–1392. https://doi.org/10.1177/1934578x1300801011

Çömlekçioğlu, N., & Özden, M. (2020). Effects of colchicine application and ploidy level on fruit secondary metabolite profiles of goldenberry (Physalis peruviana l.). Applied Ecology and Environmental Research, 18(1), 289–302. https://doi.org/10.15666/aeer/1801_289302

de Carvalho, M. de J. d. S., Gomes, V. B., Souza, A. da S., Aud, F. F., Santos-Serejo, J. A., & Oliveira, E. J. (2016). Inducing autotetraploids in cassava using oryzalin and colchicine and their in vitro morphophysiological effects. Genetics and Molecular Research, 15(2), 1–14. https://doi.org/10.4238/gmr.15028281

Deans, L. E., Palmer, I. E., Touchell, D. H., & Ranney, T. G. (2021). In Vitro Induction and Characterization of Polyploid Hydrangea macrophylla and H. serrata. HortScience, 56(6), 709–715. https://doi.org/10.21273/HORTSCI15783-21

Erboğa, M., Doğan, O., & Kara, Z. (2021). The Effects of Nitrogen Protoxide and Orizalin on Promotion of Polyploidy in Grapes. Selcuk Journal of Agricultural and Food Sciences, 35(3), 244–248. https://doi.org/10.15316/SJAFS.2021.253

Ermayanti, T. M., Wijayanta, A. N., & Ratnadewi, D. (2018). Induksi Poliploidi pada tanaman talas ( Colocasia esculenta ( L .) Schott ) Kultivar Kaliurang dengan perlakuan kolkisin secara in vitro. Biologi Indonesia, 14(1), 91–102.

Friska, M., & Daryono, B. S. (2017). Karakter Fenotip Jahe Merah (Zingiber officinale Roxb. var rubrum Rosc.) Hasil Poliploidisasi dengan Kolkisin. Al-Kauniyah: Jurnal Biologi, 10(2), 91–97. https://doi.org/10.15408/kauniyah.v10i2.4813

Gantait, S., & Mukherjee, E. (2021). Induced autopolyploidy—a promising approach for enhanced biosynthesis of plant secondary metabolites: an insight. In Journal of Genetic Engineering and Biotechnology (Vol. 19, Issue 4, pp. 1–13). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1186/s43141-020-00109-8

Gunasena, M. D. K. M., Sachinthanie Senarath, R. M. U., & Senarath, W. T. P. S. K. (2021). A Review on Chemical Composition, Biosynthesis of Steviol Glycosides, Application, Cultivation, and Phytochemical Screening of Stevia rebaudiana (Bert.) Bertoni. Journal of Pharmaceutical Research International, 33, 85–104. https://doi.org/10.9734/jpri/2021/v33i29B31593

Handayani, T., Prawestri, A. D., Rahayu, R. S., & Leksonowati, A. (2023). Oryzalin-Induced Taro (Colocasia esculenta L.) Tetraploid and Diploid Assessment for Growth and Agronomic Traits. SABRAO Journal of Breeding and Genetics, 55(1), 163–174. https://doi.org/10.54910/sabrao2023.55.1.16

Handayani, T., Witjaksono, & Nugraheni, K. U. (2017). Induksi Tetraploid Pada Tanaman Jambu Biji Merah (Psidium guajava L.) secara In Vitro. Jurnal Biologi Indonesia, 13(2), 271–278. https://doi.org/10.47349/jbi/13022017/271

Ishida, T., Yoshimura, H., Takekawa, M., Higaki, T., Ideue, T., Hatano, M., Igarashi, M., Tani, T., Sawa, S., & Ishikawa, H. (2021). Discovery, characterization and functional improvement of kumamonamide as a novel plant growth inhibitor that disturbs plant microtubules. Scientific Reports, 11(1), 6077. https://doi.org/10.1038/s41598-021-85501-1

Kara, Z., & Doğan, O. (2022). Reactions of Some Grapevine Rootstock Cuttings to Mutagenic Applications. Selcuk Journal of Agricultural and Food Sciences, 36(2), 238–246. https://doi.org/10.15316/SJAFS.2022.031

Kasmiyati, S., Kristiani, E. B. E., & Herawati, M. M. (2020). Effect of Induced Polyploidy on Plant Growth, Chlorophyll and Flavonoid Content of Artemisia cina. Biosaintifika: Journal of Biology & Biology Education, 12(1), 90–96. https://doi.org/10.15294/biosaintifika.v12i1.22548

Kim, H. E., Han, J. E., Lee, H., Kim, J. H., Kim, H. H., Lee, K. Y., Shin, J. H., Kim, H. K., & Park, S. Y. (2021). Tetraploidization increases the contents of functional metabolites in Cnidium officinale. Agronomy, 11(1561), 1–15. https://doi.org/10.3390/agronomy11081561

Langhans, M., Niemes, S., Pimpl, P., & Robinson, D. G. (2009). Oryzalin bodies: In addition to its anti-microtubule properties, the dinitroaniline herbicide oryzalin causes nodulation of the endoplasmic reticulum. Protoplasma, 236(1–4), 73–84. https://doi.org/10.1007/s00709-009-0059-2

Lestari, E. G. (2021). Aplikasi Induksi Mutasi Untuk Pemuliaan Tanaman Hias. Ilmu-Ilmu Hayati, 21(3), 335–344.

Moongngarm, A., Sriharboot, N., Loypimai, P., & Moontree, T. (2022). Ohmic heating-assisted water extraction of steviol glycosides and phytochemicals from Stevia rebaudiana leaves. LWT - Food Science and Technology, 154, 112798. https://doi.org/10.1016/j.lwt.2021.112798

Morejohn, L. C., Bureau, T. E., Molè-Bajer, J., Bajer, A. S., & Fosket, D. E. (1987). Oryzalin, a dinitroaniline herbicide, binds to plant tubulin and inhibits microtubule polymerization in vitro. Planta, 172(2), 252–264. https://doi.org/10.1007/BF00394595

Mullins, E., Bresson, J., Dalmay, T., Dewhurst, I. C., Epstein, M. M., Firbank, L. G., Guerche, P., Hejatko, J., Moreno, F. J., Naegeli, H., Nogué, F., Sánchez Serrano, J. J., Savoini, G., Veromann, E., Veronesi, F., Casacuberta, J., Lenzi, P., Munoz Guajardo, I., Raffaello, T., & Rostoks, N. (2021). In vivo and in vitro random mutagenesis techniques in plants. EFSA Journal, 19(11), e06611. https://doi.org/10.2903/j.efsa.2021.6611

Penner, R., Shanks, T., Timcke, K., Krigbaum, J., & Uno, J. (2004). Stevia from Paraguay (Vol. 1).

Peteliuk, V., Rybchuk, L., Bayliak, M., Storey, K. B., & Lushchak, O. (2021). Natural sweetener stevia rebaudiana: Functionalities, health benefits and potential risks. EXCLI Journal, 20, 1412–1430. https://doi.org/http://dx.doi.org/10.17179/excli2021-4211

Pham, P. L., Li, Y. X., Guo, H. R., Zeng, R. Z., Xie, L., Zhang, Z. S., Chen, J., Su, Q. L., & Xia, Q. (2019). Changes in morphological characteristics, regeneration ability, and polysaccharide content in tetraploid dendrobium officinale. HortScience, 54(11), 1879–1886. https://doi.org/10.21273/HORTSCI14310-19

Pliankong, P., Ard, P. S., & Wannakrairoj, S. (2017). Effects of Colchicine and Oryzalin on Polyploidy Induction and Production of Capsaicin in Capsicum frutescens L . Thai Journal of Agricultural Science, 50(2), 108–120.

Rahman, W., Al Hafiizh, E., Muji Ermayanti, T., Ellfy Rantau, D., & A. Lelono, A. (2017). Acclimation and Agronomic Performance of Polyploids Clones of Artemisia annua L. Jurnal Biologi Indonesia, 13(1), 34–42. https://doi.org/10.47349/jbi/13012017/34

Rahmi, P., Witjaksono, & Ratnadewi, D. (2019). Induksi Poliploidi Tanaman Kangkung (Ipomoea aquatica Forssk.) Kultivar Salina In Vitro dengan Oryzalin. Jurnal Biologi Indonesia, 15(1), 1–8. https://doi.org/10.47349/jbi/15012019/1

Rao, S., Kang, X., Li, J., & Chen, J. (2019). Induction, identification and characterization of tetraploidy in Lycium ruthenicum. Breeding Science, 69(1), 160–168. https://doi.org/10.1270/jsbbs.18144

Ridwan, R., Handayani, T., Riastiwi, I., & Witjaksono, W. (2018). Tetraploid teak seedling was more tolerant to drought stress than its diploid seedling. Jurnal Penelitian Kehutanan Wallacea, 7(1), 1. https://doi.org/10.18330/jwallacea.2018.vol7iss1pp1-11

Ridwan, R., & Witjaksono, W. (2020). Induction of autotetraploid Moringa plant (Moringa oleifera) using oryzalin. Biodiversitas Journal of Biological Diversity, 21(9), 4086–4093. https://doi.org/10.13057/biodiv/d210920

Rohmah, L. B. (2019). Karakter Stomata dan Fenotipik Tanaman Stevia (Stevia rebaudiana Bertoni.) Hasil Induksi Oryzalin secara In-Vitro.

Roll-Mecak, A. (2020). The Tubulin Code in Microtubule Dynamics and Information Encoding. Developmental Cell, 54(1), 7–20. https://doi.org/10.1016/j.devcel.2020.06.008

Ruiz, M., Oustric, J., Santini, J., & Morillon, R. (2020). Synthetic Polyploidy in Grafted Crops. Frontiers in Plant Science, 11(November), 1–19. https://doi.org/10.3389/fpls.2020.540894

Silalahi, C. B., Sinuraya, M., Hanafiah, D. S., & Sipayung, R. (2020). The influence of Oryzalin concentrations on the plant growth of two tomato (Solanum lycopersicum L.) varieties. IOP Conference Series: Earth and Environmental Science, 454(1), 012161. https://doi.org/10.1088/1755-1315/454/1/012161

Sinta, M. M., Wiendi, N. M. A., & Aisyah, S. I. (2018). Induksi mutasi Stevia rebaudiana dengan perendaman kolkisin secara in vitro. E-Journal Menara Perkebunan, 86(1), 1–10. https://doi.org/10.22302/iribb.jur.mp.v1i1.277

Šmarda, P., Klem, K., Knápek, O., Veselá, B., Veselá, K., Holub, P., Kuchař, V., Šilerová, A., Horová, L., & Bureš, P. (2023). Growth, physiology, and stomatal parameters of plant polyploids grown under ice age, present-day, and future CO2 concentrations. New Phytologist, 239(1), 399–414. https://doi.org/10.1111/nph.18955

Surya, M. I., Ismaini, L., Destri, D., & Normasiwi, S. (2016). An Effort of Mutation Breeding by Oryzalin and Gamma Rays on Wild Raspberry (Rubus sp.) in Cibodas Botanical Garden. Biosaintifika: Journal of Biology & Biology Education, 8(3), 331. https://doi.org/10.15294/biosaintifika.v8i3.6559

Talei, D., & Fotokian, M. H. (2020). Improving growth indices and productivity of phytochemical compounds in lemon balm (Melissa officinalis l.) through induced polyploidy. Biotechnologia, 101(3), 215–226. https://doi.org/10.5114/bta.2020.97880

Tang, Z. Q., Chen, D. L., Song, Z. J., He, Y. C., & Cai, D. T. (2010). In vitro induction and identification of tetraploid plants of Paulownia tomentosa. Plant Cell, Tissue and Organ Culture, 102(2), 213–220. https://doi.org/10.1007/S11240-010-9724-6/METRICS

Touchell, D. H., Palmer, I. E., & Ranney, T. G. (2020). In vitro Ploidy Manipulation for Crop Improvement. Frontiers in Plant Science, 11(June), 1–11. https://doi.org/10.3389/fpls.2020.00722

Wang, L.-J., Zhang, Q., Cao, Q.-Z., Gao, X., & Jia, G.-X. (2020). An efficient method for inducing multiple genotypes of tetraploids Lilium rosthornii Diels. Plant Cell, Tissue and Organ Culture (PCTOC), 141(3), 499–510. https://doi.org/10.1007/s11240-020-01807-4

Wen, Y., Liu, H., Meng, H., Qiao, L., Zhang, G., & Cheng, Z. (2022). In vitro Induction and Phenotypic Variations of Autotetraploid Garlic (Allium sativum L.) With Dwarfism. Frontiers in Plant Science, 13(June), 1–16. https://doi.org/10.3389/fpls.2022.917910

Yadav, A. K., Singh, S., Yadav, S. C., & Dhyani, D. (2013). Induction and morpho-chemical characterization of Stevia rebaudiana colchiploids. Article in Indian Journal of Agricultural Sciences, 83(2), 159–165. https://www.researchgate.net/publication/257098274

Zahumenická, P., Fernández, E., Šedivá, J., Žiarovská, J., Ros-Santaella, J. L., Martínez-Fernández, D., Russo, D., & Milella, L. (2018). Morphological, physiological and genomic comparisons between diploids and induced tetraploids in Anemone sylvestris L. Plant Cell, Tissue and Organ Culture (PCTOC), 132(2), 317–327. https://doi.org/10.1007/s11240-017-1331-3

Zeng, Q., Liu, Z., Du, K., & Kang, X. (2019). Oryzalin-induced chromosome doubling in triploid Populus and its effect on plant morphology and anatomy. Plant Cell, Tissue and Organ Culture (PCTOC), 138(3), 571–581. https://doi.org/10.1007/s11240-019-01654-y

Zhang, Y.-S., Chen, J.-J., Cao, Y.-M., Duan, J.-X., & Cai, X.-D. (2020). Induction of tetraploids in ‘Red Flash’ caladium using colchicine and oryzalin: Morphological, cytological, photosynthetic and chilling tolerance analysis. Scientia Horticulturae, 272(April), 109524. https://doi.org/10.1016/j.scienta.2020.109524

Zhou, H. wen, Zeng, W. dan, & Yan, H. bing. (2017). In vitro induction of tetraploids in cassava variety ‘Xinxuan 048’ using colchicine. Plant Cell, Tissue and Organ Culture, 128(3), 723–729. https://doi.org/10.1007/s11240-016-1141-z




DOI: https://doi.org/10.15575/biodjati.v9i1.31634

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Jurnal Biodjati

License URL: https://creativecommons.org/licenses/by-nc-nd/4.0/

Indexing By :

      

      

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 

View My Stats