In Silico Studies of Bioactive Compounds from Pseudomonas azotoformans UICC B-91 in Inhibiting Candida albicans

Rina Hidayati Pratiwi(1*), Endang Sulistyaniningsih(2), Jumadi Jepri(3)

(1) Department of Mathematics and Natural Sciences Education, Faculty of Post Graduated, Universitas Indraprasta PGRI, South Jakarta, Indonesia
(2) Department of Informatic Engineering, Faculty of Engineering and Computer Science, Universitas Indraprasta PGRI, East Jakarta, Indonesia
(3) Department of Informatic Engineering, Faculty of Engineering and Computer Science, Universitas Indraprasta PGRI, East Jakarta, Indonesia
(*) Corresponding Author


Futoamide, Gentialutine, Gentiabetine, 1-[(2E,4E)-2,4-dec- adienoyl] pyrrolidine, Lycopodine, Dihydro-lycopodine are bioactive compounds that can be obtained Pseudomonas azotoformans UICC B-91. Previous research results indicate that P. azotoformans extract- ed with dichloromethane, chloroform, and ethyl acetate have antican- didal activity against Candida albicans ATCC 10231. C. albicans is considered to become an opportunistic pathogen and well-known as the main cause of candidiasis. This study aims to determine the mech- anism of inhibition of bioactive compounds from P. azotoformans UICC B-91 on the growth of C. albicans using the
molecular docking method. Docking was carried out using the targeted (Lanosterol 14 alpha demethylase and Glucan endo-1,3-beta-D-glucosidase) dock- ing method with an exhausted parameter of 50. The size of the grid- box was adjusted to the position of the amino acid residues based on predictions of binding sites using PrankWeb. The docking results were obtained in the form of binding affinity resulting from the inter- action of the compound with the protein. Results showed that the three sample compounds had the potential to form strong and stable bonds with both
protein targets with only two ligands show a binding energy value of less than -7 kcal/mol. In addition, the speed and stability of the bond between the sample and the target protein cannot exceed control ligands, thus it can be predicted the structure of ligand. Fu- toamide, 1-[(2E,4E)-2,4-decadienoyl] pyrrolidine, Lycopodine, and Dihydrolycopodine had binding potential with Lanosterol 14 alpha demethylase. For Glucan endo-1,3-beta-D-glucosidase, only Fu- toamide had the potential to form stable and strong bonds that similar to the control. It can be concluded that the futoamide, one of ligand from P. azotoformans compounds has the potential as a multitarget inhibitor of the two C. albicans proteins, because it has various affini- ties and interaction stability for Lanosterol 14 alpha demethylase and Glucan endo-1,3-beta-D-glucosidase.


Candida, glucosidase, lanosterol, molecular docking, Pseudomonas azotoformans.

Full Text:



Abdullahi, M., & Adeniji, S. E. (2020). In-Silico Molecular Docking and ADME/Pharmacokinetic Prediction Studies of Some Novel Carboxamide Derivatives as Anti-Tubercular Agents. Chemistry Africa, 3(4), 989–1000. DOI:10.1007/s42250-020-00162-3

Abdullahi, M., Shallangwa, G. A., & Uzairu, A. (2020). In-Silico QSAR and Molecular Docking Simulation of Some Novel Aryl Sulfonamide Derivatives as Inhibitors of H5N1 Influenza A Virus Subtype. Beni-Suef University Journal of Basic and Applied Sciences, 9(2), 1-12.


Aoyama, Y., Yoshida, Y., Sonoda, Y., & Sato, Y. (1989). Deformylation of 32-oxo-24, 25-Dihydrolanosterol by The Purified Cytochrome P-45014DM (lanosterol 14 α-demethylase) from Yeast Evidence Confirming the Intermediate Step of Lanosterol 14 α-Demethylation.

Journal of Biological Chemistry, 264(31), 18502–18505. DOI: 10.1016/S0021- 9258(18)51495-2

Banerjee, S., Singh, S., Pandey, S., Bhandari, M. S., Pandey, A., & Giri, K. (2020). Biocontrol Potential of Pseudomonas azotoformans,Serratia marcescens and Trichoderma virens Against Fusarium wilt of Dalbergia sissoo. Forest Pathology, 50(2), e12581. DOI: 10.1111/efp.12581

Bard, M., Lees, N. D., Turi, T., Craft, D., Cofrin, L., Barbuch, R., Koegel, C., & Loper, J. C. (1993). Sterol Synthesis and Viability of Erg11 (cytochrome P450 lanosterol demethylase) Mutations in Saccharomyces cerevisiae and Candida albicans. Lipids, 28(11), 963–967. DOI: 10.1007/BF02537115

Caetano, C. F., Gaspar, C., Martinez-de-Oliveira, J., Palmeira-de-Oliveira, A., & Rolo, J. (2023). The Role of Yeasts in Human Health: A Review. Life, 13(4), 924. DOI: 10.3390/life13040924

Carbery, A. (2024). Learnt Representations of Proteins Can Be Used for Accurate Prediction of Small Molecule Binding Sites on Experimentally Determined and Predicted Protein Structures.

Journal of Cheminformatics, 16(1), 1–17. DOI: 10.1186/s13321-024-00821-4.

Carugo, O. (2003). How Root-Mean-Square Distance (r.m.s.d.) Values Depend on The Resolution of Protein Structures That Are Compared. Journal of Applied Crystallography, 36(1), 125–128. DOI:10.1107/S0021889802020502

Ekins, S., Mestres, J., & Testa, B. (2007). In Silico Pharmacology for Drug Discovery: Methods for Virtual Ligand Screening and Profiling. British Journal of Pharmacology, 152(1), 9–20. DOI: 10.1038/sj.bjp.0707306

Eve, A., Aliero, A. A., Nalubiri, D., Adeyemo, R. O., Akinola, S. A., Pius, T., Nabaasa, S., Nabukeera, S., Alkali, B., & Ntulume, I. (2020). In Vitro Antibacterial Activity of Crude Extracts of Artocarpus Heterophyllus Seeds Against Selected Diarrhoea-Causing Superbug

Bacteria. The Scientific World Journal, 2020(9813970), 1-11. DOI: 10.1155/2020/9813970

Filimonov, D. A., Lagunin, A. A., Gloriozova, T. A., Rudik, A. V, Druzhilovskii, D. S., Pogodin, P. V., & Poroikov, V. V. (2014). Prediction of The Biological Activity Spectra of Organic Compounds Using the PASS Online Web Resource. Chemistry of Heterocyclic Compounds,

, 444–457. DOI: 10.1007/s10593-014-1496-1

Getas, I. W., Wiadnya, I. B. R., & Waguriani, L. A. (2014). Pengaruh Penambahan Glukosa dan Waktu Inkubasi Pada Media SDA Terhadap Pertumbuhan Jamur Candida albicans. Jurnal Media Bina Ilmiah, 8(1), 51-56. ISSN: 1978- 3787.

Guan, Z., Chai, X., Yu, S., Hu, H., Jiang, Y., Meng, Q., & Wu, Q. (2010). Synthesis, Molecular Docking, and Biological Evaluation of Novel Triazole Derivatives as Antifungal Agents. Chemical Biology & Drug Design, 76(6), 496–504. DOI: 10.1111/j.1747 0285.2010.01038.x

Guntur, A. H., Setiadi, S., Alwi, I., Sudoyo, A. W., Simadibrata, M. K., Setiyohadi, B., & Syam, A. F. (2014). Sepsis, dalam Buku Ajar Ilmu Penyakit Dalam. FK UI, 3(6), 692–699.

Hargrove, T. Y., Friggeri, L., Wawrzak, Z., Qi, A., Hoekstra, W. J., Schotzinger, R. J., York, J. D., Guengerich, F. P., & Lepesheva, G. I. (2017). Structural Analyses of Candida albicans Sterol 14α Demethylase Complexed with Azole Drugs Address the Molecular Basis of Azole- Mediated Inhibition of Fungal Sterol Biosynthesis. Journal of Biological Chemistry, 292(16), 6728–6743. DOI: 10.1074/jbc.M117.778308

Jakubec, D., Skoda, P., Krivak, R., Novotny, M., & Hoksza, D. (2022). PrankWeb 3: Accelerated Ligand-Binding Site Predictions for Experimental and Modelled Protein Structures. Nucleic Acids Research, 50(W1), W593–W597. DOI: 10.1093/nar/gkac389

Jendele, L., Krivak, R., Skoda, P., Novotny, M., & Hoksza, D. (2019). PrankWeb: A Web Server for Ligand Binding Site Prediction and Visualization. Nucleic acids research, 47(W1), W345– W349. DOI: 10.1093/nar/gkz424

Ji, H., Zhang, W., Zhou, Y., Zhang, M., Zhu, J., Song, Y., Lü, J., & Zhu, J. (2000). A Three- Dimensional Model of Lanosterol 14α-Demethylase of Candida albicans and Its Interaction with Azole Antifungals. Journal of medicinal chemistry, 43(13), 2493–2505. DOI:10.1021/jm990589g

Karygianni, L., Ren, Z., Koo, H., & Thurnheer, T. (2020). Biofilm Matrixome: Extracellular Components in Structured Microbial Communities. Trends in microbiology, 28(8), 668–681. DOI: 10.1016/j.tim.2020.03.016

Kesuma, D., Siswandono, S., Purwanto, B. T., & Hardjono, S. (2018). Uji In silico Aktivitas Sitotoksik dan Toksisitas Senyawa Turunan N-(Benzoil)-N’- feniltiourea Sebagai Calon Obat Antikanker. JPSCR : Journal of Pharmaceutical Science and Clinical Research, 3(1), 01-11.

DOI: 10.20961/jpscr.v3i1.16266

Kusumaningtyas, E., Astuti, E., & Darmono, D. (2008). Sensitivitas Metode Bioautografi Kontak dan Agar Overlay dalam Penentuan Senyawa Antikapang. Jurnal Ilmu Kefarmasian Indonesia, 6(2), 75–80. ISSN 2614-6495. Corpus ID: 182117723

Kuzmanic, A., & Zagrovic, B. (2010). Determination of Ensemble-Average Pairwise Root Mean-Square Deviation from Experimental B-Factors. Biophysical Journal, 98(5), 861–871. DOI: 10.1016/j.bpj.2009.11.011

Lamb, D. C., Kelly, D. E., Venkateswarlu, K., Manning, N. J., Bligh, H. F. J., Schunck, W. H., & Kelly, S. L. (1999). Generation of A Complete, Soluble, and Catalytically Active Sterol 14α- Demethylase−Reductase Complex. Biochemistry, 38(27), 8733–8738. DOI: 10.1021/bi9825089

Lemberg, C., Martinez de San Vicente, K., Fróis-Martins, R., Altmeier, S., Tran, V. D. T., Mertens, S., Amorim-Vaz, S., Rai, L. S., d’Enfert, C., & Pagni, M. (2022). Candida albicans Commensalism in The Oral Mucosa is Favoured By Limited Virulence and Metabolic

Adaptation. PLoS Pathogens, 18(4), e1010012. DOI: 10.1371/journal.ppat.1010012

Li, W., Wang, J. J., Qian, H., Tan, L., Zhang, Z., Liu, H., Pan, Y., & Zhao, Y. (2020). Insights into The Role of Extracellular DNA and Extracellular Proteins in Biofilm Formation of Vibrio parahaemolyticus. Frontiers in Microbiology, 11, 523806. DOI: 10.3389/fmicb.2020.00813

Liu, Y., Guo, J., Li, L., & Devi, A. M. (2017). Endophytic Bacteria Associated with Endangered Plant Ferula sinkiangensis K.M. Shen in An Arid Land: Diversity and Plant Growth-Promoting Traits. Journal of Arid Land, 9(3), 432–445. DOI:10.1007/s40333-017-0015-5

Mitchell, K. F., Taff, H. T., Cuevas, M. A., Reinicke, E. L., Sanchez, H., & Andes, D. R. (2013). Role of Matrix β-1, 3 Glucan in Antifungal Resistance of Non-Albicans Candida Biofilms. Antimicrobial agents and chemotherapy, 57(4), 1918–1920. DOI: 10.1128/aac.02378-12

Monk, B. C., Sagatova, A. A., Hosseini, P., Ruma, Y. N., Wilson, R. K., & Keniya, M. V. (2020). Fungal Lanosterol 14α-demethylase: A Target for Next-Generation Antifungal Design. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1868(3), 140206. DOI:


Oktarina, E., Pratiwi, R. H., Mangunwardoyo, W., Hidayat, I., & Saepudin, E. (2021). In Vitro Antimicrobial Activities of Several Extracts Endophytic Pseudomonas azotoformans UICC B-91. IOP Conference Series: Earth and Environmental Science, 948(1), 12068.

DOI: 10.1088/1755-1315/948/1/012068

Pratiwi, R. H., Hidayat, I., Hanafi, M., Mangunwardoyo, W. (2016). Identification and Characterization of Three Endophytic Bacteria from Neesia altissima (Malvaceae) Antagonistic to Diarrhea-Causing Bacteria. Malaysian Journal of Microbiology, 12(4), 300–307. DOI:10.21161/mjm.81515

Pratiwi, R. H., Oktarina, E., Mangunwardoyo, W., Hidayat, I., & Saepudin, E. (2022). Antimicrobial Compound from Endophytic Pseudomonas azotoformans UICC B-91 of Neesia altissima

(Malvaceae). Pharmacognosy Journal, 14(1), 172–181. DOI: 10.5530/pj.2022.14.23

Rahayu, M., Harada, K. and Muzakkir, A. (2002). Kajian pemanfaatan tumbuhan obat oleh masyarakat lokal sekitar Taman Nasional Gunung Halimun, Jawa Barat. Prosiding Simposium Nasional II Tumbuhan Obat dan Aromatik. Pusat Penelitian Biologi-LIPI, Bogor, Indonesia,


Sheng, C., Zhang, W., Zhang, M., Song, Y., Ji, H., Zhu, J., Yao, J., Yu, J., Yang, S., & Zhou, Y. (2004). Homology Modeling of Lanosterol 14α-demethylase of Candida albicans and Aspergillus fumigatus and Insights into The Enzyme-substrate Interactions. Journal of

Biomolecular Structure and Dynamics, 22(1), 91–99. DOI: 10.1080/07391102.2004.10506984

Talapko, J., Juzbašić, M., Matijević, T., Pustijanac, E., Bekić, S., Kotris, I., & Škrlec, I. (2021). Candida albicans—The Virulence Factors and Clinical Manifestations of Infection. Journal of Fungi, 7(2), 79. DOI: 10.3390/jof7020079

Trott, O. & Olson, A. J. (2010). AutoDock Vina: Improving The Speed and Accuracy of Docking With a New Scoring Function, Efficient Optimization, and Multithreading. Journal of Computational Chemistry, 31(2), 455–461. DOI: 10.1002/jcc.21334

Yang, L., Bo Xu, W., Sun, L., Zhang, C., & Hua Jin, C. (2022). SAR Analysis of Heterocyclic Compounds with Monocyclic and Bicyclic Structures as Antifungal Agents. ChemMedChem,17(12), e202200221. DOI: 10.1002/cmdc.202200221



  • There are currently no refbacks.

Copyright (c) 2024 Jurnal Biodjati

License URL:

Indexing By :



Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


View My Stats