Analysis of the Molecular Structure of Lipase-Dependent Chaperone from Ralstonia pickettii Strain BK6


Muhamad Azwar Syah(1*), Sri Ambardini(2), Jamili Jamili(3), Muzuni Muzuni(4), Darul Trisandy(5)

(1) Biotechnology Department, Faculty of Mathematics and Natural Science, Halu Oleo University, Indonesia
(2) Biotechnology Department, Faculty of Mathematics and Natural Science, Halu Oleo University, Indonesia
(3) Biology Department, Faculty of Mathematics and Natural Science, Halu Oleo University, Indonesia
(4) Biotechnology Department, Faculty of Mathematics and Natural Science, Halu Oleo University, Indonesia
(5) Biotechnology Department, Faculty of Mathematics and Natural Science, Halu Oleo University, Indonesia
(*) Corresponding Author

Abstract


Several biotechnology industries are exploring the characteristics of lipase-dependent chaperones due to their distinctive biochemical traits. This study aimed to employ bioinformatics to analyze the molecular structure of Ralstonia picketii BK6's lipase-dependent chaperon (LipRM). The sequence mapping and amino acid distribution were examined using BioEdit (version 7.0.9.1). SignalP 5.0 and Interpro are employed for signal peptide detection, whereas Swiss-Model and VMD 1.9.2 are used for molecular dynamics modelling. The results showed that the Shine-Dalgarno sequence was discovered in the LipRM promoter, seven nucleotides upstream of the initiation codon (AUG) with the 5'-AGGAGA-3', and has a terminator region that facilitates the formation of a secondary structure. The protein's 3D structure prediction results indicate differences in the alpha helix chains (residues 166-174 and 254-271) between LipRM and the reference lipase. LipRM's molecular structure comprises a detachable signal peptide, and with variations in helix alpha chain conformation and ligand geometry.


Keywords


bioinformatics, lipase-dependent chaperone, modelling

Full Text:

PDF

References


Almeida, F. L. C., Travalia, B. M., Goncalves, I. S., & Forte, M. B. S. (2021). Biodiesel Production by Lipase‐Catalyzed Reactions: Bibliometric Analysis and Study of Trends. Biofuels, Bioproducts and Biorefining 15(4) : 1141–1159. DOI: 10.1002/bbb.2183.

Biasini, M., Bienert, S., Waterhouse, A., Arnold, K., Studer, G., Schmidt, T., Kiefer, F., Cassarino, T. G., Bertoni, M., & Bordoli, L. (2014). SWISS-MODEL: Modelling Protein Tertiary and Quaternary Structure using Evolutionary Information. Nucleic Acids Research 42(1) : 252–258. DOI: 10.1093/nar/gku340.

Chen, L., Kulasiri, D., & Samarasinghe, S. (2018). A Novel Data-Driven Boolean Model for Genetic Regulatory Networks. Frontiers in Physiology 9 : 1328. DOI: 10.3389/fphys.2018.01328.

Dror, A., Shemesh, E., Dayan, N., & Fishman, A. (2014). Protein Engineering by Random Mutagenesis and Structure-Guided Consensus of Geobacillus stearothermophilus Lipase T6 for Enhanced Stability in Methanol. Applied and Environmental Microbiology 80(4) : 1515–1527. DOI: 10.1128/AEM.03371-13.

Elemosho, R., Suwanto, A., & Thenawidjaja, M. (2021). Extracellular Expression in Bacillus subtilis of a Thermostable Geobacillus stearothermophilus Lipase. Electronic Journal of Biotechnology 53 : 71–79. DOI: 10.1016/j.ejbt.2021.07.003.

Fährrolfes, R., Bietz, S., Flachsenberg, F., Meyder, A., Nittinger, E., Otto, T., Volkamer, A., & Rarey, M. (2017). Proteins Plus: A Web Portal for Structure Analysis of Macromolecules. Nucleic Acids Research 45(1) : 337–343. DOI: 10.1093/nar/gkx333.

Filloux, A. (2022). Bacterial Protein Secretion Systems: Game of Types. Microbiology 168(5) : 1193. DOI: 10.1099/mic.0.001193.

Freudl, R. (2018). Signal Peptides for Recombinant Protein Secretion in Bacterial Expression Systems. Microbial Cell Factories 17(1) : 52. DOI: 10.1186/s12934-018-0901-3.

Gupta, S., & Pal, D. (2021). Clusters of Hairpins Induce Intrinsic Transcription Termination in Bacteria. Scientific Reports 11(1) : 16194. DOI: 10.1038/s41598-021-95435.

Hatsuzawa, K., Tagaya, M., & Mizushima, S. (1997). The Hydrophobic Region of Signal Peptides is a Determinant for Srp Recognition and Protein Translocation Across the ER Membrane. The Journal of Biochemistry 121(2) : 270–277. DOI: 10.1093/oxfordjournals.jbchem. a021583.

Hitch, T. C. A., & Clavel, T. (2019). A Proposed Update for the Classification and Description of Bacterial Lipolytic Enzymes. PeerJ 7 : e7249. DOI: 10.7717/peerj.7249.

Kamal, M. Z., Mohammad, T. A. S., Krishnamoorthy, G., & Rao, N. M. (2012). Role of Active Site Rigidity in Activity: Md Simulation and Fluorescence Study on a Lipase Mutant. PLoS One 7(4) : e35188. DOI: 10.1371/journal.pone.0035188.

Khan, F. I., Lan, D., Durrani, R., Huan, W., Zhao, Z., & Wang, Y. (2017). The Lid Domain in Lipases: Structural and Functional Determinant of Enzymatic Properties. Frontiers in Bioengineering and Biotechnology 5 : 16. DOI: 10.3389/fbioe.2017.00016.

Kleiner‐Grote, G. R. M., Risse, J. M., & Friehs, K. (2018). Secretion of Recombinant Proteins from E. coli. Engineering in Life Sciences 18(8) : 532–550. DOI: 10.1002/elsc.201700200.

Koop, J., Merz, J., Pietzsch, C., & Schembecker, G. (2020). Contribution of Secondary Structure Changes to The Surface Activity of Proteins. Journal of Biotechnology 323 : 208–220. DOI: 10.1016/j.jbiotec.2020.07.015.

Maffei, B., Francetic, O., & Subtil, A. (2017). Tracking Proteins Secreted by Bacteria: What’s in the Toolbox? Frontiers in Cellular and Infection Microbiology 7 : 221. DOI: 10.3389/fcimb.2017.00221.

Mazaya, M., Trinh, H.-C., & Kwon, Y.-K. (2017). Construction and Analysis of Gene-Gene Dynamics Influence Networks Based on a Boolean Model. BMC Systems Biology 11 : 101–111. DOI: 10.1186/s12918-017-0509-y.

Morita, T., Nishino, R., & Aiba, H. (2017). Role of The Terminator Hairpin in the Biogenesis of Functional Hfq-binding sRNAs. Rna 23(9) : 1419–1431. DOI: 10.1261/rna.060756.117.

Oesterle, S., Gerngross, D., Schmitt, S., Roberts, T. M., & Panke, S. (2017). Efficient Engineering of Chromosomal Ribosome Binding Site Libraries in Mismatch Repair Proficient Escherichia coli. Scientific Reports 7(1) : 12327. DOI: 10.1038/s41598-017-12395-3.

Omotajo, D., Tate, T., Cho, H., & Choudhary, M. (2015). Distribution and Diversity of Ribosome Binding Sites in Prokaryotic Genomes. BMC Genomics 16 : 1–8. DOI: 10.1186/s12864-015-1808-6.

Owji, H., Nezafat, N., Negahdaripour, M., Hajiebrahimi, A., & Ghasemi, Y. (2018). A Comprehensive Review of Signal Peptides: Structure, Roles, and Applications. European Journal of Cell Biology 97(6) : 422–441. DOI: 10.1016/j.ejcb.2018.06.003.

Panizza, P., Cesarini, S., Diaz, P., & Giordano, S. R. (2015). Saturation Mutagenesis in Selected Amino Acids to Shift Pseudomonas sp. Acidic Lipase Lip i. 3 Substrate Specificity and Activity. Chemical Communications 51(7) : 1330–1333. DOI: 10.1039/C4CC08477B.

Petersen, T., Brunak, S., von Heijne, G., & Nielsen, H. (2011). SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8: 785–786. DOI:10.1038/nmeth.1701

Pournejati, R., Karbalaei-Heidari, H. R., & Budisa, N. (2014). Secretion of Recombinant Archeal Lipase Mediated by SVP2 Signal Peptide in Escherichia Coli And its Optimization by Response Surface Methodology. Protein Expression and Purification 101 : 84–90. DOI: 10.1016/j.pep.2014.05.012

Rakesh, K., Nisha, C., Ranvir, S., Pushpender, K. S., & Jagdeep, K. (2015). Engineering of a Lipase Towards Thermostability: Studies on Additive Effect of the Two Thermo-Stabilising Mutations at Protein Surface. Adv. Genet Eng 4(126) : 111–2169. DOI: 10.4172/2169-0111.1000126.

Raveendran, S., Parameswaran, B., Ummalyma, S. B., Abraham, A., Mathew, A. K., Madhavan, A., Rebello, S., & Pandey, A. (2018). Applications of Microbial Enzymes in Food Industry. Food Technology and Biotechnology 56(1) : 16. DOI: 10.17113/ftb.56.01.18.5491.

Ray-Soni, A., Bellecourt, M. J., & Landick, R. (2016). Mechanisms of Bacterial Transcription Termination: All Good Things Must End. Annual Review of Biochemistry 85 : 319–347. DOI: 10.1146/annurev-biochem-060815-014844.

Santarossa, G., Lafranconi, P. G., Alquati, C., DeGioia, L., Alberghina, L., Fantucci, P., & Lotti, M. (2005). Mutations in the “Lid” Region Affect Chain Length Specificity and Thermostability of a Pseudomonas fragi lipase. FEBS Letters 579(11) : 2383–2386. DOI: 10.1016/j.febslet.2005.03.037.

Syah, M. A., Satya, A. A., Puspitasari, E., Suwanto, A., & Mubarik, N. R. (2023). Cloning and Co-Expression of Lipase and its Specific Foldase from Ralstonia pickettii BK6. HAYATI Journal of Biosciences 30(1) : 71–80. DOI : 10.4308/hjb.30.1.71-80.

Volkenborn, K., Kuschmierz, L., Benz, N., Lenz, P., Knapp, A., & Jaeger, K.-E. (2020). The Length of Ribosomal Binding Site Spacer Sequence Controls the Production Yield for Intracellular and Secreted Proteins by Bacillus subtilis. Microbial Cell Factories 19 : 1–12. DOI: 10.1186/s12934-020-01404-2.

Von Heijne, G. (1990). The Signal Peptide. The Journal of Membrane Biology 115 : 195–201. DOI: 10.1007/BF01868635.

Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., de Beer, T. A. P., Rempfer, C., & Bordoli, L. (2018). SWISS-MODEL: Homology Modelling of Protein Structures and Complexes. Nucleic Acids Research 46(W1) : W296–W303. DOI: 10.1093/nar/gky427.

Wolfenden, R., Lewis Jr, C. A., Yuan, Y., & Carter Jr, C. W. (2015). Temperature Dependence of Amino Acid Hydrophobicities. Proceedings of the National Academy of Sciences 112(24) : 7484–7488. DOI: 10.1073/pnas.1507565112.

Wu, Z., Yang, K. K., Liszka, M. J., Lee, A., Batzilla, A., Wernick, D., Weiner, D. P., & Arnold, F. H. (2020). Signal Peptides Generated by Attention-Based Neural Networks. ACS Synthetic Biology 9(8) : 2154–2161. DOI: 10.1021/acssynbio.0c00219.

Yuzbasheva, E.Y., Gotovtsev, P.M., Mostova, E.B., Sineokii, S.P. (2014). Biodiesel production via enzymatic catalysis. Appl Biochem Microbiol 50: 737–749. DOI: 10.1134/S0003683814080067

Zhang, M., Song, J., Xiao, J., Jin, J., Nomura, C. T., Chen, S., & Wang, Q. (2022). Engineered Multiple Translation Initiation Sites: A Novel Tool to Enhance Protein Production in Bacillus Licheniformis and Other Industrially Relevant Bacteria. Nucleic Acids Research 50(20) : 11979–11990. DOI: 10.1093/nar/gkac1039.

Zhang, W., Lu, J., Zhang, S., Liu, L., Pang, X., & Lv, J. (2018). Development an Effective System to Expression Recombinant Protein in E. coli via Comparison and Optimization of Signal Peptides: Expression of Pseudomonas fluorescens BJ-10 Thermostable Lipase as Case Study. Microbial Cell Factories 17 : 1–12. DOI: 10.1186/s12934-018-0894-y.




DOI: https://doi.org/10.15575/biodjati.v9i2.33770

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Jurnal Biodjati

License URL: https://creativecommons.org/licenses/by-nc-nd/4.0/

Indexing By :

      

      

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 

View My Stats