Thidiazuron Improved Aglaonema ‘Ruby’ Microshoot Multiplication for Mass Production and Microfloriculture Development

Authors

  • Allya Alifia Purbaya Department of Botany, Faculty of Biology, Universitas Jenderal Soedirman, Indonesia
  • Rendie Prasetyo Department of Botany, Faculty of Biology, Universitas Jenderal Soedirman, Indonesia
  • Siti Samiyarsih Department of Botany, Faculty of Biology, Universitas Jenderal Soedirman, Indonesia
  • Sugiyono Department of Botany, Faculty of Biology, Universitas Jenderal Soedirman, Indonesia

DOI:

https://doi.org/10.15575/biodjati.v10i1.34401

Keywords:

aglaonema ‘Ruby’, BAP, kinetin, microshoot, thidiazuron

Abstract

Aglaonema 'Ruby' is a hybrid Aglaonema with a dominant green leaf pattern and a red accent in the middle. This cultivar is widely cultivated and in great demand, and it can potentially be used in micro floriculture development. Conventional Aglaonema propagation through stem cuttings can only produce 1-3 shoots. Therefore, the in vitro culture method is proposed. The objectives of this study were to evaluate the effect of three synthetic cytokinins (BAP, Kinetin, and TDZ—the latter being a phenylurea derivative with cytokinin-like activity) and concentrations on the multiplication of Aglaonema 'Ruby' microshoot. The research has been carried out experimentally using a split-plot design. The main plot was cytokinin types, consisting of BAP, Kinetin, and Thidiazuron; the subplot was cytokinin concentrations at 0, 5, 10, 15, and 20 µM. The measured parameters include shoot emergence time, number of shoots, leaves, and shoot length. The data were analyzed using an analysis of variance (ANOVA) followed by Duncan's multiple range test at 95% confidence level. It can be concluded that the growth of Aglaonema 'Ruby' micro shoots was controlled by the type and concentration of cytokinin given. Thidiazuron was better than Kinetin and BAP in stimulating the growth of Aglaonema 'Ruby' microshoots. Cytokinin at 10 µM seemed to be effective in improving Aglaonema 'Ruby' micro shoots multiplication. Thidiazuron at 10 µM can increase the production of Aglaonema 'Ruby' shoot to support both mass production of seedlings and microfloriculture products. Further studies are needed to optimize shoot and root development to produce good plantlets, easing the subsequent acclimatization.

References

Ahmad, N., & Faisal, M. (2018). Thidiazuron: From urea derivative to plant growth regulator. In Thidiazuron: From Urea Derivative to Plant Growth Regulator. Springer Singapore. DOI: 10.1007/978-981-10-8004-3

Bidon, B., Kabbara, S., Courdavault, V., Glévarec, G., Oudin, A., Héricourt, F., Carpin, S., Spíchal, L., Binder, B. M., Cock, J. M., & Papon, N. (2020). Cytokinin and Ethylene Cell Signaling Pathways from Prokaryotes to Eukaryotes. Cells, 9(11). DOI: 10.3390/CELLS9112526

BPS. (2021). Produksi Tanaman Hias Menurut Kabupaten/Kota dan Jenis Tanaman di Provinsi Jawa Tengah (tangkai), 2019 dan 2020.

Brunoni, F., Rolli, E., Polverini, E., Spíchal, L., & Ricci, A. (2021). The adjuvant activity of two urea derivatives on cytokinins: an example of serendipitous dual effect. Plant Growth Regulation, 95(2), 169–190. DOI: 10.1007/S10725-021-00735-3/METRICS

de Oliveira, L. S., Brondani, G. E., Molinari, L. V., Dias, R. Z., Teixeira, G. L., Gonçalves, A. N., & de Almeida, M. (2022). Optimal cytokinin/auxin balance for indirect shoot organogenesis of Eucalyptus cloeziana and production of ex vitro rooted micro-cuttings. Journal of Forestry Research, 33(5), 1573–1584. DOI: 10.1007/S11676-022-01454-9/METRICS

Dewir, Y. H., Nurmansyah, Naidoo, Y., & Teixeira da Silva, J. A. (2018). Thidiazuron-induced abnormalities in plant tissue cultures. Plant Cell Reports, 37(11), 1451–1470. DOI: 10.1007/s00299-018-2326-1

Dikaryani, D., Hidayat, C., chaidir, L., & Nuraini, A. (2019). Induksi Mata Tunas Aglaonema Varietas Siam Pearl Dengan Media Dasar Dan BAP (6-Benzyl Amino Purine) Secara In vitro. In Prosiding Seminar Nasional Agroteknologi, 122–131.

Dinani, E. T., Shukla, M. R., Turi, C. E., Sullivan, J. A., & Saxena, P. K. (2018). Thidiazuron: Modulator of morphogenesis in vitro. In Thidiazuron: From Urea Derivative to Plant Growth Regulator (pp. 1–36). Springer Singapore. DOI: 10.1007/978-981-10-8004-3_1

El-Gedawey, H. I. M., & Hussein, S. E. (2022). Micropropagation of Aglaonema ‘Lady Valentine’ by Axillary Shoots Explants. Egyptian Academic Journal of Biological Sciences, H. Botany, 13(2), 129–142. DOI: 10.21608/EAJBSH.2022.273593

Erland, L. A. E., Giebelhaus, R. T., Victor, J. M. R., Murch, S. J., & Saxena, P. K. (2020). The morphoregulatory role of Thidiazuron: Metabolomics-guided hypothesis generation for mechanisms of activity. Biomolecules, 10(9), 1–34. DOI: 10.3390/biom10091253

Fathy, M., Saad Eldin, S. M., Naseem, M., Dandekar, T., & Othman, E. M. (2022). Cytokinins: Wide-Spread Signaling Hormones from Plants to Humans with High Medical Potential. Nutrients, 14(7), 1495. DOI: 10.3390/nu14071495

Gethami, F. R. Al, & Sayed, H. E. S. A. El. (2020). In vitro: Influence of Various Concentrations of Plant Growth Regulators (BAP & NAA) and Sucrose on Regeneration of Chenopodium quinoa Willd. Plant. Asian Journal of Biology, 34–43. DOI: 10.9734/ajob/2020/v9i430095

Hai, N. N., Chuong, N. N., Tu, N. H. C., Kisiala, A., Hoang, X. L. T., & Thao, N. P. (2020). Role and Regulation of Cytokinins in Plant Response to Drought Stress. Plants 2020, Vol. 9, Page 422, 9(4), 422. DOI: 10.3390/PLANTS9040422

Hunt, R. (1990). Basic growth analysis. Unwin Hyman Ltd. London.

Hussain, S., Nanda, S., Zhang, J., Rehmani, M. I. A., Suleman, M., Li, G., & Hou, H. (2021). Auxin and Cytokinin Interplay during Leaf Morphogenesis and Phyllotaxy. Plants, 10(8). DOI: 10.3390/plants10081732

Jing, H., & Strader, L. C. (2019). Interplay of auxin and cytokinin in lateral root development. International Journal of Molecular Sciences, 20(3). DOI:10.3390/ijms20030486

Kaur, R., Sharma, N., Tikoria, R., Ali, Kour, S., Kumar, D., & Ohri, P. (2022). Insights into Biosynthesis and Signaling of Cytokinins During Plant Growth, Development and Stress Tolerance (pp. 153–187). DOI: 10.1007/978-3-031-05427-3_7

Kaviani, B., Sedaghathoor, S., Reza, M., Motlagh, S., & Rouhi, S. (2019). Influence of plant growth regulators (BA, TDZ, 2-iP and NAA) on micropropagation of Aglaonema widuri. Iranian Journal of Plant Physiology, 9(4), 2901–2909.

Kieber, J. J., & Schaller, G. E. (2018). Cytokinin signaling in plant development. Development (Cambridge), 145(4). DOI: 10.1242/DEV.149344,

Klomkamhaeng, C., Laohavisuti, N., & Jongput, B. (2019). Tissue culture of Anubias congenensis aquatic plants using Thidiazuron. Journal of Agriculture, King Mongkut's Institute of Technology Ladkrabang, 37(4), 642–647. https://li01.tci-thaijo.org/index.php/agritechjournal/article/view/229362

Legesse, T., Mekbib, F., & Gebre, E. (2022). Effect of cytokinins concentration and types for shoot induction and multiplication experiments of In vitro Propagation of Black Pepper (Piper nigrum L.) from Nodal Culture. International Journal Of Agricultural Sciences, 4, 2348–3997.

Li, L., Zheng, Q., Jiang, W., Xiao, N., Zeng, F., Chen, G., Mak, M., Chen, Z. H., & Deng, F. (2022). Molecular Regulation and Evolution of Cytokinin Signaling in Plant Abiotic Stresses. Plant and Cell Physiology, 63(12), 1787–1805. DOI:10.1093/pcp/pcac071

Li, S. M., Zheng, H. X., Zhang, X. S., & Sui, N. (2021). Cytokinins as central regulators during plant growth and stress response. Plant Cell Reports, 40(2), 271–282. DOI: 10.1007/s00299-020-02612-1

Mishra, B. S., Sharma, M., & Laxmi, A. (2022). Role of sugar and auxin crosstalk in plant growth and development. Physiologia Plantarum, 174(1). DOI:10.1111/PPL.13546

Naaz, A., Siddique, I., & Ahmad, A. (2021). TDZ-Induced Efficient Micropropagation from Juvenile Nodal Segment of Syzygium cumini (Skill): A Recalcitrant Tree. In I. Siddique (Ed.), Propagation and Genetic Manipulation of Plants. Springer Singapore. DOI:10.1007/978-981-15-7736-9

Neil Emery, R. J., & Kisiala, A. (2020). The roles of cytokinins in plants and their response to environmental stimuli. Plants, 9(9), 1–4. DOI: 10.3390/PLANTS9091158,

Nguyen, H. N., Nguyen, T. Q., Kisiala, A. B., & Emery, R. J. N. (2021). Beyond transport: cytokinin ribosides are translocated and active in regulating the development and environmental responses of plants. Planta, 254(3). DOI: 10.1007/s00425-021-03693-2

Nisler, J. (2018). TDZ: Mode of action, use and potential in agriculture. In Thidiazuron: From Urea Derivative to Plant Growth Regulator (pp. 37–59). Springer Singapore. DOI: 10.1007/978-981-10-8004-3_2

Nisler, J., Kopecny, D., Pekna, Z., Koncitikova, R., Koprna, R., Murvanidze, N., Werbrouck, S. P. O., Havlícek, L., De DIego, N., Kopecna, M., Wimmer, Z., Briozzo, P., Morera, S., Zalabak, D., Spíchal, L., & Strnad, M. (2021). Diphenylurea derived cytokinin oxidase/dehydrogenase inhibitors for biotechnology and agriculture. Journal of Experimental Botany, 72(2), 355–370. DOI: 10.1093/JXB/ERAA437,

Nowakowska, K., Pinkowska, A., Siedlecka, E., & Pacholczak, A. (2022). The effect of cytokinins on shoot proliferation, biochemical changes and genetic stability of Rhododendron Kazimierz Odnowiciel in the in vitro cultures. Plant Cell, Tissue and Organ Culture, 149(3), 675–684. DOI: 10.1007/S11240-021-02206-Z/FIGURES/3

Phillips, G. C., & Garda, M. (2019). Plant tissue culture media and practices: an overview. In In vitro Cellular and Developmental Biology Plant (Vol. 55, Issue 3, pp. 242–257). Springer New York LLC. DOI: 10.1007/s11627-019-09983-5

Powell, A. E., & Heyl, A. (2023). The origin and early evolution of cytokinin signaling. Frontiers in Plant Science, 14, 1142748. DOI: 10.3389/FPLS.2023.1142748

Prasad, R. (2022). Cytokinin and Its Key Role to Enrich the Plant Nutrients and Growth Under Adverse Conditions An Update. Frontiers in Genetics, 13, 883924. DOI: 10.3389/FGENE.2022.883924/XML/NLM

Prasetyo, R., Sugiyono, & Prayoga, L. (2020). Induksi Tunas Mikro Pisang Kultivar Ambon Nangka ( Musa Sp.) Secara In vitro. Vigor: Jurnal Ilmu Pertanian Dan Subtropika, 5(2), 45–50.

Putri, R. K., Purwaningsih, S., Purwaningsih, T., Prasetyo, E., & Riky. (2022). Analisis Kandungan Klorofil Tanaman Hias Aglaonema. BIOSENSE, 05(01), 34–40. DOI: 10.36526/biosense.v5i01.1904

Ram, K., Patel, A. K., Choudhary, S. K., & Shekhawat, N. S. (2022). Synergetic Effects of TDZ With Various Phytohormones on High Frequency Plant Regeneration From Mature Nodal Explants of Capparis decidua and Their Ex vivo Implications. Plant Cell, Tissue and Organ Culture, 149(3), 621–633. DOI: 10.1007/s11240-022-02234-3

Restanto, D. P., Intania, A., Fanata, W. I. D., Tanzil, A. I., & Prayoga, M. C. (2024). Pengaruh BAP terhadap Induksi Tunas Aglaonema (Aglaonema commutatum Schott.). Jurnal Ilmu Ilmu Pertanian Indonesia, 26(1), 8–13. DOI: 10.31186/jipi.26.1.8-13

Restianto, Y. E., Suliyanto, Naufalin, L. R., Krisnaresanti, A., & Chasanah, N. (2024). Antecedents of Intention to Purchase Online Microculture Souvenirs: The Role of Perceived Risk. Journal of Hunan University Natural Sciences, 51(1), 137–146. DOI: 10.55463/issn.1674-2974.51.1.14

Ricci, A., & Rolli, E. (2020). Some Urea Derivatives Positively Affect Adventitious Root Formation: Old Concepts and the State of the Art. Plants 2020, Vol. 9, Page 321, 9(3), 321. DOI: 10.3390/PLANTS9030321

Sakakibara, H. (2021). Cytokinin biosynthesis and transport for systemic nitrogen signaling. Plant Journal, 105(2), 421–430. DOI: 10.1111/tpj.15011

Saptowalyono, C. A. (2022, May 29). Wapres Ungkap Tiap Bulan Indonesia Masih Impor 600.000 Bibit Aglaonema. Kompas.Id. https://www.kompas.id/baca/ekonomi/2022/05/29/wapres-ungkap-tiap-bulan-indonesia-masih-impor-600000-bibit-aglaonema

Sawardekar, S., Balasaheb Sawant Konkan Krishi Vidyapeeth, C., Sandip Sherkar Junior Research Fellow, I., Biotechnology Centre Balasaheb Sawant Konkan Krishi Vidyapeeth, P., Sherkar Junior Research Fellow, S., & Sherkar, S. (2024). Advances in micropropagation of Aglaonema var. Red valentine. International Journal of Advanced Biochemistry Research, 8(2), 668–675. DOI: 10.33545/26174693.2024.V8.I2H.821

Schuchovski, C., Sant’Anna Santos, B. F., Marra, R. C., & Biasi, L. A. (2020). Morphological and anatomical insights into de novo shoot organogenesis of in vitro ‘Delite’ rabbiteye blueberries. Heliyon, 6(11), e05468. DOI: 10.1016/J.HELIYON.2020.E05468

Smeringai, J., Schrumpfová, P. P., & Pernisová, M. (2023). Cytokinins regulators of de novo shoot organogenesis. Frontiers in Plant Science, 14, 1239133. DOI: 10.3389/FPLS.2023.1239133

Soontornyatara, S., & Klammorn, P. (2020). Effect of different combinations of NAA and TDZ for shoot induction in vitro culture of Aglaonema simplex (Blume) Blume. Acta Horticulturae, 1298, 485–489. DOI: 10.17660/ACTAHORTIC.2020.1298.66

Suliyanto, E. Restianto, Y., Rifda Naufalin, L., Krisnaresanti, A., & Yunianty, A. (2022). Microfloriculture Souvenir Creative Industry: Feasibility Study. International Journal of Research-Granthaalayah,10(11),290–299. DOI: 10.29121/granthaalayah.v10.i11.2022.4923

Taha, R. A., Allam, M. A., Hassan, S. A. M., Bakr, B. M. M., & Hassan, M. M. (2021). Thidiazuron-induced Direct Organogenesis from Immature Inflorescence of Three Date Palm Cultivars. Journal of Genetic Engineering and Biotechnology, 19(1), 14. DOI: 10.1186/s43141-021-00115-4

Taj ALdeen, A. M., & SAbd El-Aal, M. (2021). Enhancement of Aglaonema Commutatum Propagation using Thidiazuron and Naphthalene Acetic Acid in vitro. London Journal of Medical and Health Research, 21(1), 7–17.

Tamyiz, M., Prayoga, L., Prasetyo, R., Murchie, E. H., & Sugiyono, S. (2022). Improving Agarwood (Aquilaria malaccensis Lamk.) Plantlet Formation Using Various Types and Concentrations of Auxins. Caraka Tani: Journal of Sustainable Agriculture, 37(1), 142–151. DOI: 10.20961/carakatani.v37i1.58370

Tuncer, B. (2021). Use Of Thidiazuron In Tissue Culture Studies In Vegetables. Balkan Agriculture Congress. https://orcid.org/0000-0002-4402-4536

Wahyuni, D. K., Prasetyo, D., & Hariyanto, S. (2014). The Leaf Culture Development of Aglaonema sp. Treated by Combination of NAA, 2,4-D and BAP as Growth Regulators. Jurnal Bioslogos, 4(1), 9–16. DOI:10.35799/jbl.4.1.2014.4837

Wang, F., Li, Y., Pang, Y., Hu, J., Kang, X., & Qian, C. (2025). Thidiazuron Enhances Strawberry Shoot Multiplication by Regulating Hormone Signal Transduction Pathways. International Journal of Molecular Sciences, 26(9), 4060. DOI: 10.3390/IJMS26094060/S1

Wang, M., Gourrierec, J. Le, Jiao, F., Demotes-Mainard, S., Perez-Garcia, M. D., Ogé, L., Hamama, L., Crespel, L., Bertheloot, J., Chen, J., Grappin, P., & Sakr, S. (2021). Convergence and Divergence of Sugar and Cytokinin Signaling in Plant Development. International Journal of Molecular Sciences 2021, Vol. 22, Page 1282, 22(3), 1282. DOI: 10.3390/IJMS22031282

Wang, M., Su, L., Cong, Y., Chen, J., Geng, Y., Qian, C., Xu, Q., Chen, X., & Qi, X. (2021). Sugars enhance parthenocarpic fruit formation in cucumber by promoting auxin and cytokinin signaling. Scientia Horticulturae, 283, 110061. DOI: 10.1016/J.SCIENTA.2021.110061

Wu, W., Du, K., Kang, X., & Wei, H. (2021). The diverse roles of cytokinins in regulating leaf development. Horticulture Research 2021 8:1, 8(1), 1–13. DOI: 10.1038/s41438-021-00558-3

Yang, W., Cortijo, S., Korsbo, N., Roszak, P., Schiessl, K., Gurzadyan, A., Wightman, R., Jönsson, H., & Meyerowitz, E. (2021). Molecular mechanism of cytokinin-activated cell division in Arabidopsis. Science (New York, N.Y.), 371(6536), 1350. DOI: 10.1126/SCIENCE.ABE2305

Zahara, M., & Win, C. C. (2020). A Review: The Effect of Plant Growth Regulators on Micropropagation of Aglaonema sp. Journal of Tropical Horticulture, 3(2), 96–100. DOI: 10.33089/jthort.v3i2.58

Zhao, J., Wang, J., Liu, J., Zhang, P., Kudoyarova, G., Liu, C.J., & Zhang, K. (2024). Spatially Distributed Cytokinins: Metabolism, Signaling, and Transport. Cell Press Partner Journal: Plant Communications , 5(100936), 1–16. DOI: 10.1016/j.xplc.2024.100936

Downloads

Published

31-05-2025

How to Cite

Allya Alifia Purbaya, Rendie Prasetyo, Siti Samiyarsih, & Sugiyono. (2025). Thidiazuron Improved Aglaonema ‘Ruby’ Microshoot Multiplication for Mass Production and Microfloriculture Development. Jurnal Biodjati, 10(1), 184–200. https://doi.org/10.15575/biodjati.v10i1.34401

Issue

Section

Articles

Citation Check