Investigating Species Composition and Abundance of Marine Microalgae from Temajo Island Waters, West Kalimantan, Indonesia


Ikha Safitri(1*), Arie Antasari Kushadiwiojayanto(2), Mega Sari Juane Sofiana(3), Duc-Hung Nguyen(4), Rebiha Adjout(5)

(1) Marine Science Department, Faculty of Mathematics and Natural Sciences, Universitas Tanjungpura, Jl. Prof. Dr. H. Hadari Nawawi, Pontianak, Kalimantan Barat, Indonesia, 78124, Indonesia
(2) Marine Science Department, Faculty of Mathematics and Natural Sciences, Universitas Tanjungpura, Jl. Prof. Dr. H. Hadari Nawawi, Pontianak, Kalimantan Barat, Indonesia, 78124, Indonesia
(3) Marine Science Department, Faculty of Mathematics and Natural Sciences, Universitas Tanjungpura, Jl. Prof. Dr. H. Hadari Nawawi, Pontianak, Kalimantan Barat, Indonesia, 78124, Indonesia
(4) Faculty of Natural Sciences Education, Saigon University, Ho Chi Minh City, Vietnam, Viet Nam
(5) Laboratoire d’Aquaculture et de Bioremédiatiation (AQUABIOR), Université Oran 1 Ahmed Ben Bella, B.P 1524 El M’Naouer, Oran, Algérie, 31000, Algeria
(*) Corresponding Author

Abstract


Temajo Island is renowned for its marine tourism activities and is home to a range of organisms, including algae. Microalgae serve as indicator species, offering insights into the aquatic environment through their species composition and abundance. This study aims to provide preliminary data on the abundance and some ecological indices (diversity, evenness, and dominance) of microalgae on Temajo Island, which will be the basis for assessing water conditions and supporting conservation efforts and sustainable management of natural resources. The research was carried out at four stations with different characteristics. At each station, surface water samples were collected using a plankton net. The microalgae in these samples were subsequently examined under a microscope, and their quantities were measured. The microalgae abundance ranged from 2.84 to 7,697.14 ind/L, with an average of 193.34 ind/L. Chaetoceros was the most abundant genus, followed by Rhizosolenia, Guinardia, Thalassiosira, Pseudo-nitzschia, and Bacteriastrum. The diversity index (H’) ranged from 2.67 to 3.08, indicating moderate to high species richness, while the evenness index (E) ranged from 0.64 to 0.74, reflecting a high level of uniformity among microalgae populations. The dominance index (C) varied between 0.11 and 0.20, suggesting low dominance by any single genus. These indices collectively indicate a balanced and diverse microalgae community, underscoring the ecological health and stability of the Temajo Island waters. Preliminary information about the species composition and abundance of marine microalgae in this study provides valuable insights into the dynamics of microalgae populations and their ecological implications in the marine ecosystems of Indonesia.

Keywords


bacillariophyceae, biodiversity, diatom, marine microalgae

Full Text:

PDF

References


Amaral, E.T., Bender, L.B.Y.C., Rizzetti, T.M., Schneider, R.C.S. (2023). Removal of Organic Contaminants in Water Bodies or Wastewater by Microalgae of the Genus Chlorella: A Review. Case Studies in Chemical and Environmental Engineering. 8, 100476. https://doi.org/10.1016/j.cscee.2023.100476

Apriansyah, Safitri, I., Risko, Afdal, Arsad, S. (2021). Microalgae Community as Aquatic Quality Bioindicator in Peniti Estuary West Kalimantan. Saintek Perikanan: Indonesian Journal of Fisheries Science and Technology. 17(1), 65-73. https://doi.org/10.14710/ijfst.17.1.%25p.

Arsad, A., Putra, K.T., Latifah, N., Kadim, M.K., Musa, M. (2021). Epiphytic microalgae community as aquatic bioindicator in Brantas River, East Java, Indonesia. Biodiversitas. 22(7), 2961–2971. https://doi.org/10.13057/biodiv/d220749

Arsad, S., Sihombing, R.P.S., Mahmudi, M., Luthfi, O.M., Safitri, I., Pratiwi, F.D. (2024). Benthic and Planktonic Microalgae Community in Probolinggo Beach. Journal of Aquaculture and Fish Health. 13(1), 1-11. https://doi:10.20473/jafh.v13i1.40769.

Aryawati, R., Bengen, D.G., Prartono, T., Zulkifli, H. (2017). Abundance of Phytoplankton in the Coastal Waters of South Sumatera. Ilmu Kelautan. 22(1), 31-39. https://doi.org/10.14710/ik.ijms.22.1.31-39

Bakr, A., Alzain, M.N., Alzamel, N.M., Loutfy, N. (2022). Accumulation of Microcystin from Oscillatoria limnetica Lemmermann and Microcystis aeruginosa (Kützing) in Two Leafy Green Vegetable Crop Plants Lactuca sativa L. and Eruca sativa. Plants. 11, 1733. https://doi.org/10.3390/plants11131733

Ballesteros, I., De la Cruz, S., Rojas, M., Salazar, G., Martínez-Fresneda, M., Castillejo, P. (2022). Screening of Cyanotoxin Producing Genes in Ecuadorian Freshwater Systems. Acta Limnologica Brasiliensia. 34, e24. https://doi.org/10.1590/S2179-975X2122

Bates, S.S., Hubbard, K.A., Lundholm, N., Montresor, M., Leaw, C.P. (2018). Pseudo-nitzschia, Nitzschia, and Domoic Acid: New Research Since 2011. Harmful Algae. 79, 3-43. https://doi.org/10.1016/j.hal.2018.06.001

Bosak, S., Godrijan, J., Šilović, T. (2016). Dynamics of the Marine Planktonic Diatom Family Chaetocerotaceae in A Mediterranean Coastal Zone. Estuarine, Coastal and Shelf Science. 180, 69-81. https://doi.org/10.1016/j.ecss.2016.06.026

Clavero, E., Hernández-Mariné, M., Grimalt, J.O., Garcia-Pichel, F. (2008). Salinity Tolerance of Diatoms from Thalassic Hypersaline Environments. Journal of Phycology. 36(6), 1021-1034. https://doi.org/10.1046/j.1529-8817.2000.99177.x

Davis, G.C. (1995). The Marine and Freshwater Plankton. USA : Michigan State University Press.

DeNardis, N.I., Vlašić, N.N., Radić, T.M., Zemła, J., Lekka, M., Demir‑Yilmaz, I., Formosa‑Dague, C., Zorinc, M.L., Vrana, I., Juraić, K., Horvat, L., Žutinić, P., Udovič, M.G., Gašparović, B. (2024). Behavior and Surface Properties of Microalgae Indicate Environmental Changes. Journal of Applied Phycology. 36, 113–128. https://doi.org/10.1007/s10811-023-03105-w

Edler, L. and Elbrachter, M. (2010) The Utermohl Method for Quantitative Phytoplankton Analysis. Intergovernmental Oceanographic Commission of UNESCO.

Elisabeth, B., Rayen, F., Behnam, T. (2021). Microalgae Culture Quality Indicators: A Review. Critical Reviews in Biotechnology. 41(4), 457-473. doi: https://doi.org/10.1080/07388551.2020.1854672

Igwaran, A., Kayode, A.J., Moloantoa, K.M., Khetsha, Z.P., Unuofin, J.O. (2024). Cyanobacteria Harmful Algae Blooms: Causes, Impacts, and Risk Management. Water Air Soil Pollut. 235, 71. https://doi.org/10.1007/s11270-023-06782-y

Gobler, C.J. (2020). Climate Change and Harmful Algal Blooms: Insights and Perspective. Harmful Algae. 91, 101731. PMid:32057341. http://dx.doi.org/10.1016/j.hal.2019.101731

Gronning, J. and Kiorboe, T. (2020). Kiorboe Diatom Defence: Grazer Induction and Cost of Shell-Thickening Funct. Ecol. 34, 1790-1801. http://dx.doi.org/10.1111/1365-2435.13635

Grossman, A. (2016). Nutrient Acquisition: The Generation of Bioactive Vitamin B12 by Microalgae. Current Biology. 26, R319–R321. https://doi.org/10.1016/j.cub.2016.02.047

Hadi, Y.S., Japa, L., Zulkifli, L. (2022). Community Structure of Bacillariophyceae in the Water of Klui Beach, North Lombok. Jurnal Biologi Tropis. 22(2), 557–564. http://dx.doi.org/10.29303/jbt.v22i2.3398.

Hoffmeyer, M.S., Duttoa, M.S., Berasategui, A.A., Garciaa, M.D., Pettigrosso, R.E., Almandoz, G.O., D'Agostino, V., García, T.M., Fabro, E., Paparazzo, F.E., Solís, M., Williamsf, G., Esteves, J.L., Krock, B. (2020). Domoic acid, Pseudo-nitzschia spp. and Potential Vectors at the Base of The Pelagic Food Web Over the Northern Patagonian Coast, Southwestern Atlantic. Journal of Marine Systems. 212, 103448. https://doi.org/10.1016/j.jmarsys.2020.103448

Hoppenrath, M., Beszteri, B., Drebes, G., Halliger, H., van Beusekom, J., Janisch, S., Wiltshire, K. (2007). Thalassiosira species (Bacillariophyceae, Thalassiosirales) in the North Sea at Helgoland (German Bight) and Sylt (North Frisian Wadden Sea) - A first Approach to Assessing Diversity. Eur. J. Phycol. 42, 271-288. doi:10.1080/09670260701352288

Ibelings, B.W., Kurmayer, R., Azevedo, S.M.F.O., Wood, S.A., Chorus, I., Welker, M. (2021). Chapter 4: Understanding the Occurence of Cyanobacteria and Cyanotoxins. 83p. https://doi: 10.1201/9781003081449-4

Kholssi, R., Lougraimzi, H., Moreno-Garrido, I. (2023). Effects of Global Environmental Change on Microalgal Photosynthesis, Growth and Their Distribution. Mar. Environ. Res. 184, 105877. https://doi.org/10.1016/j.marenvres.2023.105877

Klemm, K., Cembella, A., Clarke, D., Cusack, C., Arneborg, L., Karlson, B., Liu, Y., Naustvoll, L., Siano, R., Gran-Stadniczeñko, S., John, U. (2022). Apparent Biogeographical Trends in Alexandrium Blooms for Northern Europe: Identifying Links to Climate Change and Effective Adaptive Actions. Harmful Algae. 119, 102335. https://doi.org/10.1016/j.hal.2022.102335

Krebs, C.J. 1985. Experimental Analysis of Distribution and Abundance. 3rd Ed. New York: Haper and Row Publisher.

Lim, Y.K., Phang, S.M., Rahman, A.N., Sturges, W.T., Malin, G. (2017). Halocarbon Emissions from Marine Phytoplankton and Climate Change. Intl. J. Environ. Sci. Technol. 14(6), 1355-1370. https://doi.org/10.1007/s13762-016-1219-5

Lobus, N.V. and Kulikovskiy, M.S. (2023). The Co-Evolution Aspects of the Biogeochemical Role of Phytoplankton in Aquatic Ecosystems: A Review. Biology (Basel). 12(1), 92. https://doi.org/ 10.3390/biology12010092

Mahmudi, M., Arsad, S., Musa, M., Lusiana, E.D., Buwono, N.R., Indahwati, A.D., Irmawati, Sukmaputri, N.A., Prasasti, A.L., Larasati, A.P., Sharfina, A.A.S., Aldhiya, P.R., Mutiara, R., Putri, S.G. (2023). Marine Microalgae Assemblages of the East Java Coast Based on Sub-Habitats Representatives and their Relationship to the Environmental Factors. Journal of Ecological Engineering. 24(12), 268–281. https://doi.org/10.12911 /22998993/173580

Maltsev, Y., Maltseva, S., Kociolek, J.P., Jahn, R., Kulikovskiy, M. (2021). Biogeography of the Cosmopolitan Terrestrial Diatom Hantzschia amphioxys Sensu Lato Based on Molecular and Morphological Data. Scientific Reports. 11, 4266. https://doi.org/10.1038/s41598-021-82092-9

Mardiana, T.Y., Ariadi, H., Al Ramadhani, F.M., Syakirin, M.B., Linayati. (2024). Dynamic Modeling System of Cholorophyceae Abundance in Pen-Culture Ponds During the Dry Season. Ecological Engineering & Environmental Technology. 25(8), 47–56. https://doi.org/10.12912/27197050/189238

Minggat, E., Roseli, W., Tanaka, Y. (2021). Nutrient Absorption and Biomass Production by the Marine Diatom Chaetoceros muelleri: Effects of Temperature, Salinity, Photoperiod, and Light Intensity. J. Ecol. Eng. 22(1), 231-240. https://doi.org/10.12911/22998993/129253

Naselli-Flores, L. and Padisák, J. (2023). Ecosystem Services Provided by Marine and Freshwater Phytoplankton. Hydrobiologia. 850, 2691–2706. https://doi.org/10.1007/s10750-022-04795-y

Odum, E.P. 1993. Dasar-Dasar Ekologi. Yogyakarta: Gajah Mada University Press.

Palenzuela, J.M.T., Vilas, L.G., Bellas, F.M., Garet, E., González-Fernández, A., Spyrakos, E. (2019). Pseudo-nitzschia Blooms in a Coastal Upwelling System: Remote Sensing Detection, Toxicity and Environmental Variables. Water. 11, 1954. https://doi.org/10.3390/w11091954

Pančić, M., Torres, R.R., Almeda, R., Kiørboe, T. (2019). Silicified Cell Walls as A Defensive Trait in Diatoms. Proc. Biol Sci. 286(1901), 20190184. https://doi.org/10.1098/rspb.2019.0184

Pawhestri, S.W., Nurdevita, R., Saputri, D.A., Winandari, O.P. (2020). Identification of Phytoplankton That Causes Harmful Algae Blooms (Habs) in The Hurun Bay Water. IOP Conf. Series: Journal of Physics: Conf. Series. 1467, 012062. https://doi.org/10.1088/1742-6596/1467/1/012062

Pednekar, S.M., Bates, S.S., Kerkar, V., Prabhu Matondkar, S.G. (2018). Environmental Factors Affecting the Distribution of Pseudo-nitzschia in Two Monsoonal Estuaries of Western India and Effects of Salinity on Growth and Domoic Acid Production by P. pungens. Estuaries Coasts. 41, 1448–1462. doi:10.1007/s12237-018-0366-y

Radchenko, I.G., Shevchenko, V.P., Kravchishina, M.D., Il’inskii, V.V., Georgiev, A.P., Tolstikov, A.V., Chul’tsova, A.L., Ilyash, L.V. (2018). The First Record of Thalassiosira angulata (Bacillariophyceae) Bloom in the White Sea: Spatial Distribution and Associated Species. Moscow Univ. Biol.Sci. Bull. 73, 217–221. https://doi.org/10.3103/S0096392518040089

Ramili, Y., Umasangaji, H., Drakel, A. (2023). Komposisi dan Kelimpahan Fitoplankton Berpotensi Harmful Algal Blooms (HABs) di Perairan Pesisir Pulau Ternate, Maluku Utara. AGRIKAN - Jurnal Agribisnis Perikanan. 16(1), 83-93. https://doi.org/10.52046/agrikan.v15i1.83-93

Razali, R., Leaw, C.P., Lim, H.C., Nyanti, L., Ishak, I., Lim, P.T. (2015). Harmful Microalgae Assemblage in the Aquaculture Area of Aman Island, Northen Strait of Malacca. Malaysian Journal of Science. 34, 24-36. https://doi.org/10.22452/mjs.vol34no1.3

Redzuan, N.S. and Milow, P. (2021). Monthly Chaetocerotales Diversity and Abundance, and Its Relationship with Water Physicochemical Parameters and Phytoplankton Diversity in Carey Island Mangrove Ecosystem, Malaysia. Biodiversitas. 22(7), 2919-2927. https://doi.org/ 10.13057/biodiv/d220744

Rimet, F., Pinseel, E., Bouchez, A., Japoshvili, B., Mumladze, L. (2023). Diatom Endemism and Taxonomic Turnover: Assessment ion High-Altitude Alpine Lakes Covering A Large Geographical Range. Science of the Total Environment. 871, 161970. https://doi.org/10.1016/j.scitotenv.2023.161970

Romero, L., Huamaní, A., Sanchez, S., Hernández-Becerril, D.U. (2023). Harmful algal bloom of the dinoflagellate Blixaea quinquecornis (Abé) Gottschling in bays of North-Central Peru. International Conference on Harmful Algae. 165-170. https://doi.org/10.5281/zenodo.7035076

Safitri, I., Warsidah, Sofiana, M.S.J. (2023). Seaweed Diversity in the Waters of Pantai Tanjung Api Paloh West Kalimantan. Jurnal Perikanan dan Kelautan. 28(2), 134-142. http://dx.doi.org/10.31258/jpk.28.2.134-142

Shannon, C.E. and W. Wiener. 1949. The Mathematical Theory of Communication. University of Illinois Press. Urbana. 125 pp.

Shevchenko, O.G., Shulgina, M.A., Turanov, S.V. (2022). Morphological Variability and Genetic Analysis of Thalassiosira tenera (Bacillariophyta), A Dominant Phytoplankton Species from the Northwestern Sea of Japan. Phycologia. 61(2), 132-145. https://doi.org/10.1080/00318884.2021.2012071

Singh, J. and Saxena, R.C. (2015). Chapter 2 - An Introduction to Microalgae: Diversity and Significance. Academic Press. 11-24. https://doi.org/10.1016/B978-0-12-800776-1.00002-9

Soeprapto, H., Ariadi, H., Badrudin, U. (2023). The Dynamics of Chlorella spp. Abundance and Its Relationship With Water Quality Parameters in Intensive Shrimp Ponds. Biodiversitas. 24(5), 2919–2926. https://doi.org/10.13057/biodiv/d240547

Susrini, P.D., Nurdiansyah, S.I., Sofiana, M.S.J., Kushadiwijayanto, A.A., Safitri, I. (2023). Macroalgae Community Structure in the Waters of Temajo Island, Mempawah Regency, West Kalimantan. Jurnal Ilmiah Platax. 11(1), 259–268. https://ejournal.unsrat.ac.id/v3/index.php/platax/article/view/48011

Tang, E.P.Y. (2008). Why do Dinoflagellates Have Lower Growth Rates? Journal of Phycology. 32(1), 80–84. https://doi.org/10.1111/j.0022-3646.1996.00080.x

Tanković, M.S., Baričević, A., Ivančić, I., Kuzˇat, N., Medić, N., Pustijanac, E., Novak, T., Gasˇparović, B., Pfannkuchen, D.M., Pfannkuchen, M. (2018). Insights into the Life Strategy of the Common Marine Diatom Chaetoceros peruvianus Brightwell. PLoS ONE. 13(9), e0203634. https://doi.org/10.1371/journal.pone.0203634

Trainer, V.L., Bates, S.S., Lundholm, N., Thessen, A.E., Cochlan, W.P., Adams, N.G., Trick, C.G. (2012). Pseudo-nitzschia Physiological Ecology, Phylogeny, Toxicity, Monitoring and Impacts on Ecosystem Health. Harmful Algae. 14, 271-300. https://doi.org/10.1016/j.hal.2011.10.025.

van Vuuren, S.J., Taylor, J., van Ginkel, C., Gerber, A. (2006). Easy Identification of the Most Common Freshwater Algae: A Guide for the Identification of Microscopic Algae in South African Freshwater. North-West University and Department of Water Affairs and Forestry. ISBN 0-621-35471-6.

Wang, Z., Akbar, S., Sun, Y., Gu, L., Zhang, L., Lyu, K., Huang, Y., Yang, Z. (2021). Cyanobacterial Dominance and Succession: Factors, Mechanisms, Predictions, and Managements. Journal of Environmental Management. 297, 113281. https://doi.org/10.1016/j.jenvman.2021.113281.

Wijeyaratne, W.M.D.N., Nanayakkara, D.B.M. (2020). Monitoring of Water Quality Variation Trends in A Tropical Urban Wetland System Located Within A Ramsar Wetland City: A GIS and Phytoplankton Based Assessment. Environ. Nanotechnol. Monit. Manag. 14, 100323. https://doi.org/10.1016/j.enmm.2020.100323

Yamaji. 1984. Illustration of the Marine Plankton of Japan. Hoikusho, Osaka, Japan. 369p.

Yang, H-S., Jeon, S.G., Oh, S.J. (2016). Survival Strategy of Dominant Diatom Chaetoceros debilis and Leptocylindrus danicus as Southwestern parts of East Sea. Journal of the Korean Society of Marine Environment and Safety. 22(2), 212-219. https://doi.org/10.7837/kosomes.2016.22.2.212.

Zainal, Kushadiwijayanto, A.A., Safitri, I., Sofiana, M.S.J. (2023). Community of Phytoplankton as Aquatic Quality Bioindicator in Teluk Melanau Waters Lemukutan Island West Kalimantan. Jurnal Ilmiah PLATAX. 11(2), 455–472. https://doi.org/10.35800/jip.v11i2.49229.

Zikriah, Bachtiar, I., Japa, L. (2020). The Community of Chlorophyta as Bioindicator of Water Pollution in Pandanduri Dam District of Terara East Lombok. Jurnal Biologi Tropis. 20(3), 546–555. https://doi.org/10.29303/jbt.v20i3.2344




DOI: https://doi.org/10.15575/biodjati.v9i2.38028

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Jurnal Biodjati

License URL: https://creativecommons.org/licenses/by-nc-nd/4.0/

Indexing By :

      

      

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 

View My Stats