Cadmium Accumulation and Tolerance of Talinum paniculatum Callus Culture

Authors

  • Miranda Gardha Viorenta Department of Biology, Faculty of Biotechnology, Universitas Kristen Duta Wacana, Indonesia
  • Ratih Restiani Department of Biology, Faculty of Biotechnology, Universitas Kristen Duta Wacana, Indonesia
  • Dwi Aditiyarini Department of Biology, Faculty of Biotechnology, Universitas Kristen Duta Wacana, Indonesia

DOI:

https://doi.org/10.15575/biodjati.v10i1.38255

Keywords:

accumulation , cadmium , callus , phytoremediation , Talinum paniculatum

Abstract

The increasing use of inorganic fertilizers is one of the main factors contributing to increased Cadmium (Cd) pollution in the environment. Phytoremediation is one of the strategies that can be used to address the problem of Cd pollution in the environment. The selection of Cadmium-tolerant plants can be conducted using an in vitro culture. Talinum paniculatum as an ornamental plant is potentially used as a phytoremediation agent, but limited information is available regarding its accumulation ability and tolerance to cadmium stress. Therefore, this study aims to determine the accumulation ability and tolerance of T. paniculatum callus to cadmium at various concentrations. This study used a completely randomized design (CRD) with six replications of Cd concentration treatment (0, 5, 10, and 20 ppm). Accumulation and tolerance of callus to Cd were assessed based on callus biomass, callus color, tolerance index, heavy metal concentration in callus and media, and Bioconcentration Factor value. An increase in Cd concentration showed a change in callus color from yellowish green to blackish. In addition, there was no significant difference in dry weight (0.078-0.086 g) and tolerance index (102.631%-113.158%) of callus. However, increasing Cd concentration showed significant differences in callus Cd accumulation from media (5-20 ppm) and Bioconcentration Factor (BCF) ratio (1.282-5.701), indicating the ability of T. paniculatum as an accumulator plant. This study's results support phytoremediation efforts against heavy metal pollution, including cadmium.

References

Aghaz, M., Bandehagh, A., Aghazade, E., Toorchi, M., & Gholezani, K. G. (2013). Effects Of Cadmium Stress on Some Growth and Physiological Characteristics In Dill (Anethum graveolens) Ecotypes. International Journal of Agriculture: Research and Review, 3(2), 409–413.

Ashrafzadeh, S., & Leung, D. M. W. (2015). In Vitro Breeding of Heavy Metal-Resistant Plants: A Review. Horticulture Environment and Biotechnology, 56(2), 131–136. DOI: 10.1007/s13580-015-0128-8

Bajji, M., & Druart, P. (2012). Protocol development for in vitro assessment of cadmium tolerance in black alder and basket willow at the callus and whole plant levels. Acta Horticulturae, 961, 123–131. DOI: 10.17660/ActaHortic.2012.961.13

Bernabe-Antonio, A., Alvarez, L., Buendía-Gonzalez, L., Maldonado-Magana, A., & Cruz-Sosa, F. (2015). Accumulation and tolerance of Cr and Pb using a cell suspension culture system of Jatropha curcas. Plant Cell, Tissue and Organ Culture, 120(1), 221–228. DOI: 10.1007/s11240-014-0597-y

Bukar, P., & Onoja, M. (2020). Assessment of Heavy metals in Water Leaf (Talinum triagulare ) Cultivated on Fadama Soils Through Irrigation in Nigeria. International Research Journal of Public and Environmental Health, 7(3), 74–80. DOI: 10.15739/irjpeh.20.011

Chaitanya, G., Pavani, C., & Shasthree, T. (2023). Effect of heavy metals on in vitro growth and development of the Momordica cymbalaria Fenzl. International Journal of Environmental Science and Technology, 20(8), 8701–8708. DOI: 10.1007/s13762-022-04437-9

Dos Reis, P. E., de Souza, K. R. D., Romao, G. F., de Fatima Esteves, G., Ishii, K. Y., Magalhães, P. C., dos Santos Filho, P. R., & de Souza, T. C. (2022). Potential of Talinum paniculatum Cuttings in Lead and Manganese Rhizofiltration. Water, Air, and Soil Pollution, 233(7), 1–19. DOI: 0.1007/s11270-022-05731-5

Eddijanto, I., Restiani, R., & Aditiyarini, D. (2022). Elisitasi Flavonoid menggunakan Kitosan pada Kultur Kalus Ginseng Jawa (Talinum paniculatum Gaertn.). Sciscitatio, 3(2), 90–99. DOI: 10.21460/sciscitatio.2022.32.94

Elazab, D., Lambardi, M., & Capuana, M. (2023). In Vitro Culture Studies for the Mitigation of Heavy Metal Stress in Plants. Plants, 12(19), 1–19. DOI: 10.3390/plants12193387

Fan, P., Wu, L., Wang, Q., Wang, Y., Luo, H., Song, J., Yang, M., Yao, H., & Chen, S. (2023). Physiological and molecular mechanisms of medicinal plants in response to cadmium stress: Current status and future perspective. Journal of Hazardous Materials, 450(February), 131008. DOI: 10.1016/j.jhazmat.2023.131008

Gonzales de Souza, G., Mendes Pinheiro, A. L., Silva, J. A., Veroneze-Júnior, V., Carvalho, M., Bertoli, A. C., Barbosa, S., & Corrêa de Souza, T. (2018). Morpho-physiological Tolerance Mechanisms of Talinum patens to Lead. Water, Air, and Soil Pollution, 229(1), 0–12. DOI: 10.1007/s11270-017-3658-0

Hidayati, N. (2005). Fitoremediasi dan Potensi Tumbuhan Hiperakumulator. Hayati Journal of Biosciences, 12(1), 35–40. DOI: 10.1016/S1978-3019(16)30321-7

Ikeuchi, M., Sugimoto, K., & Iwase, A. (2013). Plant callus: Mechanisms of induction and repression. Plant Cell, 25(9), 3159–3173. DOI: 10.1105/tpc.113.116053

Jan, T., Khan, N., Wahab, M., Okla, M. K., Abdel-Maksoud, M. A., Saleh, I. A., Abu-Harirah, H. A., AlRamadneh, T. N., & AbdElgawad, H. (2023). Assessing lead and cadmium tolerance of Chenopodium ambrosioides during micropropagation: an in-depth qualitative and quantitative analysis. PeerJ, 11, 1–17. DOI: 10.7717/peerj.16369

Jaskulak, M., & Grobelak, A. (2017). Potential applications of plant in vitro cultures in phytoremediation studies. Challenges of Modern Technology, 8(2), 11–17. DOI: 10.5604/01.3001.0012.2613

Kozminska, A., Wiszniewska, A., Hanus-Fajerska, E., & Muszynska, E. (2018). Recent strategies of increasing metal tolerance and phytoremediation potential using genetic transformation of plants. Plant Biotechnology Reports, 12(1), 1–14. DOI: 10.1007/s11816-017-0467-2

Kubier, A., Wilkin, R. T., & Pichler, T. (2019). Cadmium in soils and groundwater: A review. Atmospheric Environment, 1(108), 1–16. DOI: 10.1016/j.apgeochem.2019.104388.

Kumar, A., Prasad, M. N. V., Mohan Murali Achary, V., & Panda, B. B. (2013). Elucidation of lead-induced oxidative stress in Talinum triangulare roots by analysis of antioxidant responses and DNA damage at cellular level. Environmental Science and Pollution Research, 20(7), 4551–4561. DOI: 10.1007/s11356-012-1354-6

Kusumaningrum, H., Herusugondo, H., Zainuri, M., & Raharjo, B. (2012). Analisis kandungan kadmium (Cd) dalama tanaman bawang merah dari Tegal. Jurnal Sains Dan Matematika, 20(4), 98–102.

Lama, G., Shrestha, B., Limbu, S., Gurung, P. R., & Pant, K. K. (2024). In vitro selection and characterization of cadmium-tolerant calli of Tagetes erecta and Gomphrena globosa. Banko Janakari, 34(1), 30–39. DOI: 10.3126/banko.v34i1.66289

Nawrot-Chorabik, K. (2017). Response of the callus cells of fir (Abies nordmanniana) to in vitro heavy metal stress. Folia Forestalia Polonica, Series A, 59(1), 25–33. DOI: 10.1515/ffp-2017-0003

Nedjimi, B. (2021). Phytoremediation: a sustainable environmental technology for heavy metals decontamination. SN Applied Sciences, 3(3), 1–19. DOI: 10.1007/s42452-021-04301-4

Nur, F. (2013). Fitoremediasi Logam Berat Kadmium (Cd). Biogenesis: Jurnal Ilmiah Biologi, 1(1), 74–83. DOI: 10.24252/bio.v1i1.450

Nurchayati, Y., Santosa, S., Nugroho, L. H., & Indrianto, A. (2016). Growth Pattern and Copper Accumulation in Callus of Datura metel. Biosaintifika: Journal of Biology & Biology Education, 8(2), 135. DOI: 10.15294/biosaintifika.v8i2.5177

Raza, A., Habib, M., Kakavand, S. N., Zahid, Z., Zahra, N., Sharif, R., & Hasanuzzaman, M. (2020). Phytoremediation of cadmium: Physiological, biochemical, and molecular mechanisms. Biology, 9(7), 1–46. DOI:10.3390/biology9070177

Restiani, R., Kaban, S. M. P., Sekar, A. A., & Matheos, J. H. (2024). Respon Pertumbuhan dan Toleransi Kalus Talinum paniculatum terhadap Cekaman Logam Berat Krom (Cr). Jurnal Biologi Papua, 16(1), 71–78. DOI: 10.31957/jbp.3590

Sanchez-Ramos, M., Berman-Bahena, S., Alvarez, L., Sanchez-Carranza, J. N., Bernabe-Antonio, A., Roman-Guerrero, A., Marquina-Bahena, S., & Cruz-Sosa, F. (2022). Effect of Plant Growth Regulators on Different Explants of Artemisia ludoviciana under Photoperiod and Darkness Conditions and Their Influence on Achillin Production. Processes, 10(8). DOI: 10.3390/pr10081439

Sharma, J. K., Kumar, N., Singh, N. P., & Santal, A. R. (2023). Phytoremediation technologies and their mechanism for removal of heavy metal from contaminated soil: An approach for a sustainable environment. Frontiers in Plant Science, 14(January), 1–13. DOI: 10.3389/fpls.2023.1076876

Singh, S., Parihar, P., Singh, R., Singh, V. P., & Prasad, S. M. (2016). Heavy metal tolerance in plants: Role of transcriptomics, proteomics, metabolomics, and ionomics. Frontiers in Plant Science, 6(FEB2016), 1–36. DOI: 10.3389/fpls.2015.01143

Suman, K., & Kalpana, A. (2013). Effects of heavy metal stress on callus induction and regeneration of Finger millet (Eleusine coracana ) ( L .) Gaertn. Research Journal of Recent Sciences, 2, 24–28.

Tahtamouni, R. W., Shibli, R. A. A., Younes, L. S., Abu-Mallouh, S., & Al-Qudah, T. S. (2020). Responses of Lantana Camara Linn. Callus Cultures to Heavy Metals Added to the Culture Media. Jordan Journal of Biological Sciences, 13(4), 551–557.

Wiszniewska, A., Hanus Fajerska, E., Muszynska, E., & Smolen, S. (2017). Comparative Assessment of Response to Cadmium in Heavy Metal Tolerant Shrubs Cultured In Vitro. Water, Air, and Soil Pollution, 228(8). DOI: 10.1007/s11270-017-3488-0

Zafar, S. N., & Javed, F. (2016). In vitro study of interactive effect of cadmium and salicylic acid on growth and biochemical parameters in tetra and hexaploid wheat. International Journal of Agriculture and Biology, 18(4), 671–676. DOI: 10.17957/IJAB/15.0135

Downloads

Published

31-05-2025

How to Cite

Miranda Gardha Viorenta, Ratih Restiani, & Dwi Aditiyarini. (2025). Cadmium Accumulation and Tolerance of Talinum paniculatum Callus Culture. Jurnal Biodjati, 10(1), 77–89. https://doi.org/10.15575/biodjati.v10i1.38255

Issue

Section

Articles

Citation Check