Biomass Estimation of Brantas Riparian Zone Tree, Batu City, East Java

Authors

  • Hamdani Dwi Prasetyo Biology Study Program, Faculty of Mathematics and Natural Science, Universitas Islam Malang, Indonesia
  • Ari Hayati Biology Study Program, Faculty of Mathematics and Natural Science, Universitas Islam Malang, Indonesia

DOI:

https://doi.org/10.15575/biodjati.v10i1.38444

Keywords:

biomass , land cover , potential carbon , riparian zone

Abstract

Research to estimate carbon absorption using ecosystem productivity models carried out in riparian zones is still rare. This research aims to determine the carbon and biomass potential in the Brantas River riparian zone, Batu City. The data obtained was retrieved using Microsoft Excel 2013 software. The data was tested differently using Paleontological Statistics, through normality and homogeneity tests, and continued with a different test. Different tests are carried out to determine the quality of the riparian zone between the observation stations. In addition, the Principal Component Analysis (PCA) is continued with Biplot and Cluster Analysis to understand the differences between the stations and to know the characteristics between stations. The biomass in the village of Sidomulyo is bigger than any other location. The biomass is about 8760 tons/ha with a carbon potential of 4380 tons. This value is very high compared to the entire location. The average potential carbon at each location ranges from 67 to 285 tons. Sidomulyo village's riparian zone, rich in carbon and biomass, requires preservation to prevent global warming due to carbon emissions. The closure of land at the site of the village of Sidomulyo did not cause the riparian zone in the village to become less. The results showed that although the village of Sidomulyo has a savage land cover and settlements, the carbon storage from trees in the riparian zone is huge. This research aids in developing conservation strategies for riparian zones with high carbon storage potential, supports climate change mitigation, and informs policymakers on sustainable land management practices in the Brantas River watershed.

References

Abou Rajab, Y. J. M. (2016). Shade trees in cacao agroforestry systems: Influence on roots and net primary production. Thesis. Niedersachsische Staats-und Universitatsbibliothek Gottingen.

Alberts, J. M., Beaulieu, J. J., & Buffam, I. (2017). Watershed Land Use and Seasonal Variation Constrain the Influence of Riparian Canopy Cover on Stream Ecosystem Metabolism. Ecosystems, 20(3), 553–567. DOI: 10.1007/s10021-016-0040-9

Andraczek, K., Weigelt, A., Cantuarias, C. J. B., Fischer, M., Hinderling, J., Prati, D., Rauwolf, E. M. N., & van der Plas, F. (2023). Relationships between species richness and biomass production are context dependent in grasslands differing in land-use and seed addition. Scientific Reports, 13(1), 19663. DOI: 10.1038/s41598-023-47020-z

Bleich, M. E., Mortati, A. F., André, T., & Piedade, M. T. F. (2014). Riparian Deforestation Affects the Structural Dynamics of Headwater Streams in Southern Brazilian Amazonia. Tropical Conservation Science, 7(4), 657–676. DOI: 10.1177/194008291400700406

Brejao, G. L., Hoeinghaus, D. J., Perez Mayorga, M. A., Ferraz, S. F. B., & Casatti, L. (2018). Threshold responses of Amazonian stream fishes to timing and extent of deforestation. Conservation Biology, 32(4), 860–871. DOI: 10.1111/cobi.13061

Chang, X., Xing, Y., Wang, J., Yang, H., & Gong, W. (2022). Effects of land use and cover change (LUCC) on terrestrial carbon stocks in China between 2000 and 2018. Resources, Conservation and Recycling, 182, 106333. DOI: 10.1016/j.resconrec.2022.106333

Chave, J., Coomes, D., Jansen, S., Lewis, S. L., Swenson, N. G., & Zanne, A. E. (2009). Towards a worldwide wood economics spectrum. Ecology Letters, 12(4), 351–366. DOI: 10.1111/j.1461-0248.2009.01285.x

Dindaroglu, T., Reis, M., Akay, A. E., & Tonguç, F. (2015). Hydroecological approach for determining the width of riparian buffer zones for providing soil conservation and water quality. International Journal of Environmental Science and Technology, 12(1), 275–284. DOI: 10.1007/s13762-013-0444-4

Duncanson, L., Disney, M., Armston, J., Minor, D., & Nickeson, J. (2021). Aboveground Woody Biomass Product Validation Good Practices Protocol. DOI: 10.5067/DOC/CEOSWGCV/LPV/AGB.001

Huylenbroeck, L., Latte, N., Lejeune, P., Georges, B., Claessens, H., & Michez, A. (2021). What Factors Shape Spatial Distribution of Biomass in Riparian Forests? Insights from a LiDAR Survey over a Large Area. Forests, 12(3), 371. DOI: 10.3390/f12030371

Jiao, W., Chen, Y., Li, W., Zhu, C., & Li, Z. (2018). Estimation of net primary productivity and its driving factors in the Ili River Valley, China. Journal of Arid Land, 10(5), 781–793. DOI: 10.1007/s40333-018-0022-1

Liu, D., He, L., Yu, Z., Liu, Z., & Lin, J. (2020). What Factors Shape Spatial Distribution of Biomass in Riparian Forests? Insights from a LiDAR Survey over a Large Area. Water, 12(11), 3279. DOI: 10.3390/w12113279

Ma, M. (2005). Species richness vs evenness: Independent relationship and different responses to edaphic factors. Oikos, 111(1), 192–198. DOI: 10.1111/j.0030-1299.2005.13049.x

Magurran, A. E. (2004). Measuring biological diversity. Current Biology, 31(19), R1174–R1177. DOI: 10.1016/j.cub.2021.07.049

Manaye, A., Tesfamariam, B., Tesfaye, M., Worku, A., & Gufi, Y. (2021). Tree diversity and carbon stocks in agroforestry systems in northern Ethiopia. Carbon Balance and Management, 16(1), 14. DOI: 10.1186/s13021-021-00174-7

McPherson, E. G., Doorn, N. S. van, & Peper, P. J. (2016). Urban tree database and allometric equations. Gen. Tech. Rep. PSW-GTR-253. Albany, CA: U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station. 86 p., 253. https://doi.org/10.2737/PSW-GTR-253

Morandi, P. S., Marimon, B. S., Marimon-Junior, B. H., Ratter, J. A., Feldpausch, T. R., Colli, G. R., Munhoz, C. B. R., da Silva Júnior, M. C., de Souza Lima, E., Haidar, R. F., Arroyo, L., Murakami, A. A., de Gois Aquino, F., Walter, B. M. T., Ribeiro, J. F., Francoso, R., Elias, F., de Oliveira, E. A., Reis, S. M., Phillips, O. L. (2020). Tree diversity and above-ground biomass in the South America Cerrado biome and their conservation implications. Biodiversity and Conservation, 29(5), 1519–1536. DOI: 10.1007/s10531-018-1589-8

Numazawa, C. T. D., Krasovskiy, A., Kraxner, F., & Pietsch, S. A. (2020). Logging residues for charcoal production through forest management in the Brazilian Amazon: Economic gains and forest regrowth effects. Environmental Research Letters, 15(11), 114029. DOI: 10.1088/1748-9326/abb495

Orwa, C., Mutua A, Kindt R, Jamnadass R, & Simons A. 2009. Agroforestree Database: a tree reference and selection guide version 4.0. World Agroforestry Centre, Kenya. https://www.worldagroforestry.org/output/agroforestree-database accessed on 27-01-2025

Poulter, B., Aragao, L., Heyder, U., Gumpenberger, M., Heinke, J., Langerwisch, F., Rammig, A., Thonicke, K., & Cramer, W. (2010). Net biome production of the Amazon Basin in the 21st century. Global Change Biology, 16(7), 2062–2075. DOI: 10.1111/j.1365-2486.2009.02064.x

Schmitt, T. J., Dosskey, M. G., & Hoagland, K. D. (1999). Filter Strip Performance and Processes for Different Vegetation, Widths, and Contaminants. Journal of Environmental Quality, 28(5), 1479–1489. DOI: 10.2134/jeq1999.00472425002800050013x

Senna, M. C. A., Costa, M. H., Davidson, E. A., & Nobre, C. A. (2014). Modeling the impact of net primary production dynamics on post-disturbance Amazon savannization. Anais Da Academia Brasileira de Ciencias, 86, 621–632. DOI: 10.1590/0001-37652014108212

Soininen, J., Passy, S., & Hillebrand, H. (2012). The relationship between species richness and evenness: A meta-analysis of studies across aquatic ecosystems. Oecologia, 169(3), 803–809. DOI: 10.1007/s00442-011-2236-1

Tay, W., & He, Y. (2023). Detecting land cover and land use change and its impact on biomass carbon emission from 2001 to 2019 in Arkansas, U.S.A. Biogeochemistry, 165(1), 29–42. DOI: 10.1007/s10533-023-01042-x

Torres-Bejarano, A. M., Sullivan, S. M. P., Gonzalez-Daza, W., Caceres, C., & Colorado Z., G. J. (2022). Riparian vegetation structure and seasonality influence functional diversity more than taxonomic diversity of stream fish assemblages in the Colombian Amazon. Aquatic Ecology, 56(1), 153–172. DOI: 10.1007/s10452-021-09904-y

Zermeno-Hernandez, I., Benitez-Malvido, J., Suazo-Ortuno, I., & Mendez-Toribio, M. (2020). Impact of adjacent land use on the ecological condition of riparian habitats: The relation between condition and vegetation properties. Applied Vegetation Science, 23. DOI: 10.1111/avsc.12508

Zhang, F., Chen, Y., Wang, W., Jim, C. Y., Zhang, Z., Tan, M. L., Liu, C., Chan, N. W., Wang, D., Wang, Z., & Rahman, H. A. (2022). Impact of land-use/land-cover and landscape pattern on seasonal in-stream water quality in small watersheds. Journal of Cleaner Production, 357, 131907. DOI: 10.1016/j.jclepro.2022.131907

Zhao, M., Running, S., Heinsch, F. A., & Nemani, R. (2010). MODIS-Derived Terrestrial Primary Production. In B. Ramachandran, C. O. Justice, & M. J. Abrams (Eds.), Land Remote Sensing and Global Environmental Change (Vol. 11, pp. 635–660). Springer New York. DOI: 10.1007/978-1-4419-6749-7_28

Downloads

Published

31-05-2025

How to Cite

Hamdani Dwi Prasetyo, & Ari Hayati. (2025). Biomass Estimation of Brantas Riparian Zone Tree, Batu City, East Java. Jurnal Biodjati, 10(1), 131–145. https://doi.org/10.15575/biodjati.v10i1.38444

Issue

Section

Articles

Citation Check