Understanding The Structural Tissue of Pectoral Finless Albino African Catfish Clarias gariepinus Originating From Pond Cultivation

Authors

  • Farikhah Aquaculture Study Program, Faculty of Agriculture, Universitas Muhammadiyah Gresik, Indonesia
  • Aminin Aquaculture Study Program, Faculty of Agriculture, Universitas Muhammadiyah Gresik, Indonesia
  • Trisna Rama Dani Aquaculture Study Program, Faculty of Agriculture, Universitas Muhammadiyah Gresik, Indonesia
  • Ami Maghfironi Biomedical Laboratory, Faculty of Medicine, Brawijaya University, Indonesia

DOI:

https://doi.org/10.15575/biodjati.v10i1.39863

Keywords:

albino, cultivation, histology, pectoral fins, TBX5

Abstract

The loss of pectoral fin is an undesirable trait always found in almost all catfish breeding programmes in Indonesia, so further investigation is needed to clarify this problem. This study aims to describe albinism in fish with pectoral fin deformity from an immunohistochemical perspective by evaluating the correlation between two proteins (TBX5 protein and TYR protein) from eye and skin tissues. We used an individual albino fish (TL = 42 cm) found by local farmers in the Kebomas district, Gresik, to study the histological differences between albino fish without pectoral fins and black fish with regular pectoral fins using descriptive methods. The histotechniques using HE staining followed the Bioscience Laboratory, and the immunohistochemical staining was performed according to the Biomedical Laboratory procedure at Brawijaya University. The slides were scanned using Aperio Scanning CS2. Morphological structure differences determination used a t-test (α = 0.05). Spearman's rank correlation assessed the relationship between fin morphology and albinism. The results showed significant differences between the skin and retinal thickness of the two fish (p <0.05), and the total retinal thickness of albino fish without pectoral fins was significantly thinner than that of regular fish. Rank correlations showed a positive association between pectoral fin loss and reduced skin and eye histology. The histochemical studies indicated that TBX5 is an important factor in pigmentation and fin development, but additional factors may disrupt TYR regulation in albino fish. The results of this study provide further evidence for considering pectoral fin phenotype as one of the evaluation factors to make the success of a breeding program.

References

Abd-elhafeez, H. H., Soliman, S., El-mansi, A. A., Seif, M., Rashwan, A. M., Eldesoqui, M. B., & Kubale, V. (2024). Light and scanning electron microscopy of the eye of Siganus luridus (Ruppell , 1828). Frontiers in Veterinary Siencce, September, 1–12. DOI: 10.3389/fvets.2024.1417278

Ahti, P. A., Kuparinen, A., & Uusi-Heikkila, S. (2020). Size does matter-the eco-evolutionary effects of changing body size in fish. Environmental Reviews, 28(3), 311–324. DOI: 10.1139/er-2019-0076

Aldermn, S. L., & Gillis, T. E. (2024). Encyclopedia of Fish Physiology. Academic Press.

Awad, M., & Mohamedien, D. (2023). Catfish Epidermal Club Cell Morphologic and Immunologic Attributes: Heterogeneous S-100 Immunoreactivity and Possible Neuroendocrine Function. Microscopy and Microanalysis, 29(2), 858–865. DOI: 10.1093/micmic/ozad015

Barasa, J. E., & Ouma, D. F. (2024). Towards Sustainability in Seed Supply for African Catfish, Clarias gariepinus (Burchell, 1822) Culture in Kenya: Lessons from Asian Catfishes Industry. Aquaculture Research, 2024(1). DOI: 10.1155/2024/1341858

Bayramov, A. V., Yastrebov, S. A., Mednikov, D. N., Araslanova, K. R., Ermakova, G. V., & Zaraisky, A. G. (2024). Paired fins in vertebrate evolution and ontogeny. Evolution & Development, 26(3), 1–26. DOI: 10.1111/ede.12478

Bian, C., Li, R., Wen, Z., Ge, W., & Shi, Q. (2021). Phylogenetic Analysis of Core Melanin Synthesis Genes Provides Novel Insights Into the Molecular Basis of Albinism in Fish. Frontiers in Genetics, 12(August), 1–9. DOI: 10.3389/fgene.2021.707228

Boote, C., Sigal, I. A., Grytz, R., Hua, Y., Nguyen, T. D., & Girard, M. J. A. (2020). Scleral structure and biomechanics. Progress in Retinal and Eye Research, 74(June), 100773. DOI: 10.1016/j.preteyeres.2019.100773

Colihueque, N., & Araneda, C. (2014). Appearance traits in fish farming: Progress from classical genetics to genomics, providing insight into current and potential genetic improvement. Frontiers in Genetics, 5(AUG), 1–8. DOI: 10.3389/fgene.2014.00251

Dhamayanti, Y., Khairunnisa, H. K., Zahrudin, E., Bayram, M., & Suciyono. (2024). Immune Responses of Club Cells in Fish: A Review. Jurnal Medik Veteriner, 7(2), 407–412. DOI: 10.20473/jmv.vol7.iss2.2024.407-412

Díaz-Puertas, R., Adamek, M., Mallavia, R., & Falco, A. (2023). Fish Skin Mucus Extracts: An Underexplored Source of Antimicrobial Agents. Marine Drugs, 21(6). DOI: 10.3390/md21060350

Domiszewski, Z., Duszynska, K., & Stachowska, E. (2020). Influence of different heat treatments on the lipid quality of African Catfish (Clarias gariepinus). Journal of Aquatic Food Product Technology, 29(9), 886–900. DOI: 10.1080/10498850.2020.1817219

Farikhah, Sukoso, Yanuhar, U., Iranawati, F., & Arif, M. Z. (2020). An evidence of the missing complete pectoral fins trait in clarias gariepinus reared in pond is heritable. Ecology, Environment and Conservation, 26(May), S70–S76.

Farikhah, F., Aminin, A., Palupi, T. R., & Khudhori, K. (2020). Evaluasi Karakter Sirip Pektoral Hilang (SPH) Pada Ikan Lele Clarias gariepinus Strain Dumbo Ditinjau Dari Aspek Pertumbuhan. PENA Akuatika, 19(2), 39–51.

Farikhah, F., Sukoso, S., Yanuhar, U., Iranawati, F., & Sofarini, D. (2019). Identification of retinal degeneration of African Catfish C.gariepinus suffer from abnormal pectoral fins originating from cultivation in pond. Bioscience Research, 16(3), 2720–2729.

Francis, O., Arnold, N., Irabor, E., Chukwuemeka, M., & Truth, U. (2023). Pattern of color inheritance in African catfish ( Clarias gariepinus ): an expression of a Mendelian law. Fish Physiology and Biochemistry, 0123456789. DOI: 10.1007/s10695-023-01282-6

He, X., Wen, Y., Li, Z., Zhou, Y., Hu, W., Sun, J., & Liu, Q. (2023). Body color selection of domesticated carp (Cyprinus carpio) in traditional agricultural systems: Insight provided by growth performance, nutritional quality, and genetic diversity. Aquaculture, 572(July), 1–9. DOI: 10.1016/j.aquaculture.2023.739528

Hutchings, J. A., & Fraser, D. J. (2008). The nature of fisheries- and farming-induced evolution. Molecular Ecology, 17(1), 294–313. DOI: 10.1111/j.1365-294X.2007.03485

Kemigabo, C., Jere, L. W., Sikawa, D., Masemba, C., Kangombe, J., & Abdel Tawwab, M. (2019). Growth response of African catfish, Clarias gariepinus (B), larvae and fingerlings fed protease incorporated diets. Journal of Applied Ichthyology, 35(2), 480–487. DOI: 10.1111/jai.13877

Kreis, J., Bonb, R., & Vick, P. (2020). The tetraspanin Cd63 is required for eye morphogenesis in Xenopus. In microPublication biology (Vol. 2020, pp. 1–5).

Kwame Ablordeppey, R., Ren Lin, C., Song, B., & Benavente-Perez, A. (2024). Choroidal Morphology and Photoreceptor Activity Are Related and Affected by Myopia Development. Investigative Ophthalmology and Visual Science, 65(2). DOI: 10.1167/iovs.65.2.3

Lee, A. Y. (2021). Skin pigmentation abnormalities and their possible relationship with skin aging. International Journal of Molecular Sciences, 22(7). DOI: 10.3390/ijms22073727

Li, H., Wang, X., Zhang, R., Liu, L., & Zhu, H. (2024). Generation of golden goldfish Carassius auratus via tyrosinase gene targeting by CRISPR/Cas9. Aquaculture, 583(March), 1–8. DOI: 10.1016/j.aquaculture.2024.740594

Liu, J., Yin, M., Ye, Z., Hu, J., & Bao, Z. (2024). Harnessing Hue: Advances and Applications of Fish Skin Pigmentation Genetics in Aquaculture. Fishes, 9(6), 1–22. DOI: 10.3390/fishes9060220

Madkour, F. A., Abdellatif, A. M., Osman, Y. A., & Kandyel, R. M. (2023). Histological and ultrastructural characterization of the dorso-ventral skin of the juvenile and the adult starry puffer fish (Arothron stellatus, Anonymous 1798). BMC Veterinary Research, 19(1), 1–19. DOI: 10.1186/s12917-023-03784-0

Moazed, K. T. (2020). The Iris: Understanding the Essentials. In The Iris: Understanding the Essentials. DOI: 10.1007/978-3-030-45756-3

Ozerov, M. Y., Noreikiene, K., Kahar, S., Flajshans, M., Gross, R., & Vasemagi, A. (2024). Differential expression and alternative splicing analyses of multiple tissues reveal albinism-associated genes in the Wels catfish (Silurus glanis). Comparative Biochemistry and Physiology Part - B: Biochemistry and Molecular Biology, 271(October 2023). DOI: 10.1016/j.cbpb.2024.110941

Sarkar, H., Tracey-White, D., Hagag, A. M., Burgoyne, T., Nair, N., Jensen, L. D., Edwards, M. M., & Moosajee, M. (2024). Loss of REP1 impacts choroidal melanogenesis and vasculogenesis in choroideremia. Biochimica et Biophysica Acta - Molecular Basis of Disease, 1870(2), 166963. DOI: 10.1016/j.bbadis.2023.166963

Shkil, F., Kapitanova, D., Borisov, V., Laudet, V., & Veretennikov, N. (2022). Direct development of the catfish pectoral fin : An alternative pectoral fin pattern of teleosts. Developmental Dynamics, 251, 1816–1833. DOI: 10.1002/dvdy.509

Ubels, J. L., Lin, C. M., Antonetti, D. A., Diaz-Coranguez, M., Diegel, C. R., & Williams, B. O. (2022). Structure and function of the retina of low-density lipoprotein receptor-related protein 5 (Lrp5)-deficient rats. Experimental Eye Research, 217, 1–23. DOI: 10.1016/j.exer.2022.108977

Utzeri, V. J., Ribani, A., Schiavo, G., & Fontanesi, L. (2021). Describing variability in the tyrosinase (TYR) gene, the albino coat colour locus, in domestic and wild European rabbits. Italian Journal of Animal Science, 20(1), 181–187. DOI: 10.1080/1828051X.2021.1877574

Venkatesh, R., Agrawal, S., Reddy, N. G., Sridharan, A., Ong, J., & Yadav, N. K. (2022). Choroidal and retinal thickness variations in ocular albinism Ramesh. Indian J. Ophthalmol, 70(1), 2506–2510. DOI: 10.4103/ijo.IJO

Wang, C., Lu, B., Li, T., Liang, G., Xu, M., Liu, X., Tao, W., Zhou, L., Kocher, T. D., & Wang, D. (2021). Nile Tilapia: A Model for Studying Teleost Color Patterns. Journal of Heredity, 112(5), 469–484. DOI: 10.1093/jhered/esab018

Zhang, S., Zhu, X., Hu, L., Liao, K., Xu, S., Wang, D., & Guo, C. (2024). Tbx4 and Tbx5 gene expression associated with appendage development and its relationship with the absence of the pelvic fin in Pampus argenteus. Journal of Oceanology and Limnology, 42(2), 580–593. DOI: 10.1007/s00343-023-3011-y

Zhang, Z., Lin, W., He, D., Wu, Q., Cai, C., Chen, H., Shang, Y., & Zhang, X. (2023). Aquaculture environment changes fish behavioral adaptability directly or indirectly through personality traits: a case study. Reviews in Fish Biology and Fisheries, 33(4), 1423–1441. DOI: 10.1007/s11160-023-09779-2

Zheng, Y., Li, Y. F., Wang, W., Chen, Y. M., Wang, D. D., Zhao, J. J., Pan, Q. Z., Jiang, S. S., Zhang, X. F., Yuan, S. Q., Qiu, H. B., Huang, C. Y., Zhao, B. W., Zhou, Z. W., & Xia, J. C. (2015). High expression level of T-box transcription factor 5 predicts unfavorable survival in stage I and II gastric adenocarcinoma. Oncology Letters, 10(4), 2021–2026. DOI: 10.3892/ol.2015.3515

Zhong, L., Zhang, S., Wang, M., Wang, J., Chen, X., & Bian, W. (2021). First record of partial fin albinism in channel catfish Ictalurus punctatus Rafinesque, 1818 (Siluriformes: Ictaluridae) from china. Iranian Journal of Fisheries Sciences, 20(5), 1535–1541. DOI: 10.22092/ijfs.2021.125172

Zilova, L., Weinhardt, V., Tavhelidse, T., Schlagheck, C., Thumberger, T., & Wittbrodt, J. (2021). Fish primary embryonic pluripotent cells assemble into retinal tissue mirroring in vivo early eye development. ELife, 10, 1–26. DOI: 10.7554/eLife.66998

Downloads

Published

31-05-2025

How to Cite

Farikhah, Aminin, Trisna Rama Dani, & Ami Maghfironi. (2025). Understanding The Structural Tissue of Pectoral Finless Albino African Catfish Clarias gariepinus Originating From Pond Cultivation. Jurnal Biodjati, 10(1), 20–39. https://doi.org/10.15575/biodjati.v10i1.39863

Issue

Section

Articles

Citation Check