Profile of Phenolic Compounds and Phenol-Degrading Bacterial Colonies in Secondary Peat Forest Soil

Authors

  • Fiko Jervannes Department of Soil Science, Agriculture Faculty, Universitas Tanjungpura, Indonesia
  • Gusti Z. Anshari Department of Soil Science, Agriculture Faculty and Magister of Environmental Science, Universitas Tanjungpura, Indonesia
  • Evi Gusmayanti Department of Agricultural Cultivation Budidaya Pertanian, Agriculture Faculty and Magister of Environmental Science, Universitas Tanjungpura, Indonesia
  • Yulita Andriyani Department of Soil Science, Agriculture Faculty, Universitas Tanjungpura, Indonesia

DOI:

https://doi.org/10.15575/biodjati.v10i2.47139

Keywords:

histosols, phenol-degrading bacteria, peat degradation

Abstract

Peat contains high levels of phenols and lignin, which are resistant to decomposition. Drainage canals lower the groundwater table, promoting microbial degradation. This study investigated microbial decomposition in a secondary peat swamp forest by quantifying phenol-degrading bacterial colonies and measuring phenol concentrations in peat soil from Malikian Village, Mempawah Regency, West Kalimantan. Samples were collected from three plots at two depths, the aerobic layer and the anaerobic layer, with fifteen (15) samples from each depth. Bacterial colonies were counted via mineral salt medium (MSM) with up to five dilutions, whereas phenolic compounds were measured via the Folin–Ciocalteu method. Paired t-tests revealed highly significant differences in both phenol concentration (p-value < 0.001) and the number of phenol-degrading bacterial colonies (p-value < 0.003) between the aerobic layer and the anaerobic layers. These findings indicate that peat decomposition is more pronounced in the aerobic surface layer than in the permanently waterlogged layer. This observation is attributed to the greater number of phenol-degrading bacterial colonies and lower phenol concentration in the surface layer than in the deeper layer. Consequently, the aerobic conditions in the surface layer of the secondary peat swamp forest facilitate accelerated peat decomposition

References

Anshari, Afifudin, M., Nuriman, M., Gusmayanti, E., Arianie, L., Susana, R., Nusantara, R. W., Sugardjito, J., & Rafiastanto, A. (2010). Drainage and land use impacts on changes in selected peat properties and peat degradation in West Kalimantan Province, Indonesia. Biogeosciences, 7(11), 3403–3419. DOI:10.5194/bg-7-3403-2010

Anshari, G., Gusmayanti, E., Afifudin, M., Ruwaimana, M., Hendricks, L., & Gavin, D. G. (2022). Carbon loss from a deforested and drained tropical peatland over four years as assessed from peat stratigraphy. Catena, 208(105719), 1–12.

Asyhari, A., Gangga, A., Putra, C. A. S., Ritonga, R. P., Candra, R. A., Anshari, G. Z., Bowen, J. C., Perryman, C. R., & Novita, N. (2024). Quantifying the fluxes of carbon loss from an undrained tropical peatland ecosystem in Indonesia. Scientific Reports, 14(1). DOI:10.1038/s41598-024-62233-6

Couwenberg, J., & Hooijer, A. (2013). Toward robust subsidence-based soil carbon emission factors for peat soils in south east Asia, with special reference to oil palm plantations. Mires and Peat, 12(01), 1–13.

Deshmukh, C. S., Julius, D., Desai, A. R., Asyhari, A., Page, S. E., Nardi, N., Susanto, A. P., Nurholis, N., M, H., Kurnianto, S., Suardiwerianto, Y., Salam, Y. W., Agus, F., Astiani, D., Sabiham, S., Gauci, V., & Evans, C. D. (2021). Conservation slows down emission increase from a tropical peatland in Indonesia. Nature Geoscience, 1–7. DOI:10.1038/s41561-021-00785-2

Deshmukh, C. S., Julius, D., Evans, C. D., Nardi, Susanto, A. P., Page, S. E., Gauci, V., Laurén, A., Sabiham, S., Agus, F., Asyhari, A., Kurnianto, S., Suardiwerianto, Y., & Desai, A. R. (2020). Impact of forest plantation on methane emissions from tropical peatland. Global Change Biology, 26(4), 2477–2495. DOI:10.1111/gcb.15019

Freeman, C., Ostle, N. J., Fenner, N., & Kang, H. (2004). A regulatory role for phenol oxidase during decomposition in peatlands. Soil Biology and Biochemistry, 36(10), 1663–1667. DOI:10.1016/j.soilbio.2004.07.012

Hatakeyama, T., Takagi, K., & Ito, K. (2016). Biodegradation of cyromazine by melamine-degrading bacteria. Journal of Pesticide Science, 41(1), 20–24. DOI:10.1584/jpestics.D15-044

Hooijer, A., Page, S., Jauhiainen, J., Lee, W. a., Lu, X. X., Idris, A., & Anshari, G. (2012). Subsidence and carbon loss in drained tropical peatlands. Biogeosciences, 9(3), 1053–1071. DOI:10.5194/bg-9-1053-2012

Kim, J. I., Yang, Y., & Kang, H. (2024). Fluorometric assay for phenol oxidase activity in soils and its controlling variables. Applied Soil Ecology, 195. DOI:10.1016/j.apsoil.2023.105240

Kwon, M. J., Haraguchi, A., & Kang, H. (2013). Long-term water regime differentiates changes in decomposition and microbial properties in tropical peat soils exposed to the short-term drought. Soil Biology and Biochemistry, 60, 33–44. DOI:10.1016/j.soilbio.2013.01.023

Miettinen, J., Hooijer, A., Vernimmen, R., Liew, S. C., & Page, S. E. (2017). From carbon sink to carbon source: Extensive peat oxidation in insular Southeast Asia since 1990. Environmental Research Letters, 12(2). DOI:10.1088/1748-9326/aa5b6f

Morris, P. J., & Waddington, J. M. (2011). Groundwater residence time distributions in peatlands: Implications for peat decomposition and accumulation. Water Resources Research, 47(2). DOI:10.1029/2010WR009492

Novita, N., Subarno, S., Lestari, N. S., Anshari, G. Z., Lugina, M., Yeo, S., Malik, A., Asyhari, A., Putra, C., Gangga, A., Ritonga, R. P., Albar, I., Djaenudin, D., Afifanti, V. B., Poor, E., Juspesta, J., Triyanto, D. H., Basuki, I., & Ellis, P. (2022). Natural climate solutions in Indonesia : Wetlands are the key to achieve Indonesia’s national climate commitment. Environmental Research Letters, 17(114045).

Page, S. E., Morrison, R., Malins, C., Hooijer, A., Rieley, J. O., & Jaujiainen, J. (2011). Review of peat surface greenhouse gas emissions from oil palm plantations in Southeast Asia. In Indirect Effects of Biofuel Production Series (Issue 15). http://www.theicct.org/sites/default/files/publications/ICCT_Peat-Emissions_Sept2011.pdf

Pind, A., Freeman, C., & Lock, M. A. (1994). Enzymic degradation of phenolic materials in peatlands - measurement of phenol oxidase activity. Plant and Soil, 159(2), 227–231.

Sabri, I., Ng, K. X., Ku Mohammad Soffi, N., Mohd Yusoff, M. Z., Nor Muhammad, N. A., Ho, L. S., Maeda, T., & Ramli, N. (2025). Novel insights into indigenous phenol-degrading bacteria from palm oil mill effluent and their potential mechanisms for efficient phenol degradation. Environmental Technology and Innovation, 37. DOI:10.1016/j.eti.2024.103983

Sinsabaugh, R. L. (2010). Phenol oxidase, peroxidase and organic matter dynamics of soil. In Soil Biology and Biochemistry (Vol. 42, Issue 3, pp. 391–404). DOI:10.1016/j.soilbio.2009.10.014

Tolunay, D., Kowalchuk, G. A., Erkens, G., & Hefting, M. M. (2024). Aerobic and anaerobic decomposition rates in drained peatlands: Impact of botanical composition. Science of the Total Environment, 930. DOI:10.1016/j.scitotenv.2024.172639

UNEP. (2022). Global Peatlands Assessment . The State of the World ’ s Peatlands: Evidence for Action toward the Conservation, Restoration, and Sustainable Management of Peatlands. Main Report. Global Peatland Initiative. United Nations Environment Programme (UNEP). Nairobi.

Yule, C. M., Lim, Y. Y., & Lim, T. Y. (2016). Degradation of Tropical Malaysian Peatlands Decreases Levels of Phenolics in Soil and in Leaves of Macaranga pruinosa. Frontiers in Earth Science, 4(April). DOI:10.3389/feart.2016.00045

Zhang, J., Bing, W., Hu, T., Zhou, X., Zhang, J., Liang, J., & Li, Y. (2023). Enhanced biodegradation of phenol by microbial collaboration: Resistance, metabolite utilization, and pH stabilization. Environmental Research, 238. DOI:10.1016/j.envres.2023.117269

Downloads

Published

30-11-2025

How to Cite

Fiko Jervannes, Gusti Z. Anshari, Evi Gusmayanti, & Yulita Andriyani. (2025). Profile of Phenolic Compounds and Phenol-Degrading Bacterial Colonies in Secondary Peat Forest Soil. Jurnal Biodjati, 10(2), 352–360. https://doi.org/10.15575/biodjati.v10i2.47139

Issue

Section

Articles

Citation Check