Genetic Relationship of the Transgenic and Non-Transgenic Mutiara Catfish with their Hybrids Sangkuriang Catfish

Iskarimah Yolanisa, Ibnu Dwi Buwono, Yuniar Mulyani, Iskandar Iskandar

Abstract


The male broodstock of Transgenic Mutiara catfish (P) (containing Clarias gariepinus Growth Hormone, CgGH) is a fish who show fast growth. Propagation of the Transgenic Mutiara catfish F1 and F2 progeny involves the crossing of broodstock P with Non Transgenic Mutiara catfish. New genetic variations (polymorphisms) can be generated from crosses broodstock P and F1 which lead to the fast growth inheritance of transgenic fish. Phylogenetic relationship analysis showed distance and genetic variation in broodstock P, F1, F2 and Sangkuriang catfish (as controls) using the RAPD-PCR method (Random Amplified Polymorphic DNA-Polymerase Chain Reaction) as the research purposes. The results showed that OPA-03 (5'-AGTCAGCCAC-3 ') primer was selective for determining phylogenetic among catfish samples. The closest genetic similarity index originates from the female broodstock of Non Transgenic Mutiara catfish (P) (93%), while the farthest originates from the male broodstock of Mutiara Transgenic catfish (P) (51%) with F1 dan F2. Closely related broodstock catfish is not recommended to be crossed.

Keywords


genetic relationship, Mutiara catfish, polymorphism, Sangkuriang catfish, transgenic

Full Text:

PDF

References


Adolfsson, A., Ackerman, M., & Brownstein, N. C. (2018). To Cluster, or Not to Cluster: An Analysis of Clusterability Methods. Pattern Recognition. https://doi.org/10.1016/j.patcog.2018.10.026

Agustina, M. (2011). Analisis Keragaman Genetik Ikan Gurame (Osphronemus goramy Lac.) Varietas Bastar, Paris dan Bluesafir dengan Menggunakan Metode Random Amplified Polymorphic DNA (RAPD). Thesis. Universitas Padjadjaran.

Alimuddin, Yoshizaki, G., Carman, O., & Sumantadinata, K. (2003). Aplication of Gene Transfer in Aquaculture. Jurnal Akuakultur Indonesia, 2(1), 41–50.

Arifin, O. Z., Cahyanti, W., & Kristanto, H. (2017). Keragaman Genetik Tiga Generasi Ikan Tambakan (Helostoma temminkii) dalam Program Domestikasi. Jurnal Riset Akuakultur, 12(4), 295–305. Retrieved from http://ejournal-balitbang.kkp.go.id/index.php/jra

Barbas, C. F., Burton, D. R., Scott, J. K., & Silverman, G. J. (2007). Quantitation of DNA and RNA. Cold Spring Harbor Protocols, 2007(11). https://doi.org/10.1101/pdb.ip47

Beheary, M. S., Almaaty, A. A., & El-matary, F. (2015). Genetic Polymorphism and Changes in the Concentration of Heavy Metals in Catfish Clarias gariepinus from Different Sites as a Result of Environmental Contamination. Advances in Environmental Biology, 9(18), 20–32.

BPPI. (2014). Naskah Akademik Ikan Lele Tumbuh Cepat Hasil Seleksi Individu. Sukamandi.

Buwono, I. D., Iskandar, Agung, M. U. K., & Subhan, U. (2016). Perakitan Ikan Lele (Clarias sp.) Transgenik Dengan Teknik Elektroporasi Sperma. Jurnal Biologi, 20(1), 17–28.

Buwono, I. D., Lathifah, A. U., & Subhan, U. (2018). Deteksi Keragaman Genotip Hibrid Ikan Lele Sangkuriang, Mutiara Transgenik dan Non Transgenik Pada Keturunan Pertama. Jurnal Biologi Indonesia, 14(1), 133–141.

Cheng, S. S., Senoo, S., Siddiquee, S., & Rodrigues, K. F. (2015). Genetic Variation In The Mitochondrial Genome Of The Giant Grouper Epinephelus lanceolatus (Bloch, 1790) And Its Application For The Identification Of Broodstock. Aquaculture Reports, 2, 139–143. https://doi.org/10.1016/j.aqrep.2015.09.003

Danish, M., Singh, I. J., Giri, P., & Singh, C. P. (2012). Molecular Characterization Of Two Populations Of Catfish Clarias batrachus L. Using Random Amplified Polymorphic DNA ( RAPD ) Markers. African Journal of Biotechnology, 11(77), 14217–14226. https://doi.org/10.5897/AJB12.2133

Dewi, R. R. S. P. S., Marnis, H., Suprapto, R., & Syawalia, N. (2013). Produksi Ikan Lele Cepat Tumbuh Generasi F0 Menggunakan Metode Transgenesis. Jurnal Riset Akuakultur, 8(2), 173–180.

Diani, A. F. (2013). Analisis Kekerabatan Strain Lele (Clarias Spp.) Menggunakan Penanda Genetik Berbasis RAPD-PCR Thesis.. Universitas Padjadjaran.

Dunham, R. A. (2004). Aquaculture and Fisheries Biotechnology Genetic Approaches. Wallingford, Oxfordshire: CABI Publishing.

El-Hawary, S. S., El-Tantawy, M. E., Kirollos, F. N., & Hammam, W. E. (2018). Inter Simple Sequence Repeat (ISSR) and Start Codon Targeted Polymorphism (SCOT) as Discrimination Techniques Between Certain Apple and Pear Cultivars. International Research Journal of Pharmacy, 9(9). https://doi.org/10.7897/2230-8407.099192

FAO. (2001). Molecular Marker Assisted Selection as a Potential Tool for Genetic Improvement of Crops, Forest Trees, Livestock and Fish in Developing Countries. In Conference 10 of the FAO Biotechnology Forum. Retrieved from http://www.fao.org/docrep/003/x9602e/x9602e06.htm

Fatchiyah, Arumingtyas, E. L., Widyarti, S., & Rahayu, S. (2011). Biologi Molekular: Prinsip Dasar Analisis. (R. Astikawati, Ed.). Jakarta: Penerbit Erlangga.

Iswanto, B., & Suprapto, R. (2015). Abnormalitas Morfologis Benih Ikan Lele Afrika (Clarias gariepinus). Media Akuakultur, 10(2), 51–57.

Khosravinia, H., Murthy, H. N. N., Parasad, D. T., & Pirany, N. (2007). Optimizing Factors Influencing DNA Extraction From Fresh Whole Avian Blood. African Journal of Biotechnology, 6(4), 481–486.

Liu, Z. (2007). Chapter 3 Randomly Amplified Polymorphic. In Aquaculture Genome Technologies (pp. 21–28). Blackwell Publishing.

Liu, Z. J., & Cordes, J. F. (2004). DNA Marker Technologies And Their Applications In Aquaculture Genetics. Aquaculture 238, 1–37. https://doi.org/10.1016/j.aquaculture.2004.05.027

Liu, Z. J., Li, P., Argue, B. J., & Dunham, R. A. (1999). Random Amplified Polymorphic DNA Markers : Usefulness For Gene Mapping and Analysis of Genetic Variation of Catfish. Aquaculture, 174, 59–68 Random.

Mahaputro, G., Mishra, D., Shaw, K., Mishra, S., & Jena, T. (2012). Phylogenetic Tree Construction for DNA Sequences using Clustering Methods. Procedia Engineering, 38, 1362–1366. https://doi.org/10.1016/j.proeng.2012.06.169

Muharam, E. G., Buwono, I. D., & Mulyani, Y. (2012). Analisis Kekerabatan Ikan Mas Koi (Cyprinus carpio koi) dan Ikan Mas Majalaya (Cyprinus carpio carpio) Menggunakan Metode RAPD. Jurnal Perikanan Dan Kelautan, 3(3), 15–23.

Nei, M., & Li, W.-H. (1979). Mathematical Model for Studying Genetic Variation In Terms of Restriction Endonucleases. Proc. Natl. Acad. Sct. USA, 76(10), 5269–5273.

Permana, G. N., Moria, S. B., Hutapea, J. H., & Haryanti. (2009). Profil Pemijahan Ikan Tuna Sirip Kuning , Thunnus albacares dalam Bak Terkontrol dengan Analisis Mitokondria DNA. Jurnal Riset Akuakultur, 4(2), 157–167.

Rasal, K. D., Chakrapani, V., Patra, S. K., Ninawe, A. S., Sundaray, J. K., Jayasankar, P., & Barman, H. K. (2016). Status Of Transgenic Fish Production With Emphasis On Development Of Food Fishes And Novel Color Varieties Of Ornamental Fish: Implication And Future Perspectives. Journal of Fisheries Sciences, 10(3), 52–65.

Sofro, A. S. M. (1994). Keanekaragaman Genetik (Edisi Pert). Yogyakarta: ANDI OFFSET.

Tenriulo, A., Suryati, E., Parenrengi, A., & Rosmiat. (2001). Ekstraksi DNA Rumput Laut Kappaphycus alvarezii dengan Metode Fenol Kloroform. Marina Chimica Acta, 2(2), 6–10.

Williams, J. G. K., Kubelik, A. R., Livak, K. J., Rafalski, J. A., & Tingey, S. V. (1990). DNA Polymorphisms Amplified By Arbitrary Primers Are Useful As Genetic Markers. Nucleic Acids Research, 18(22), 6531–6535. https://doi.org/10.1093/nar/18.22.6531

Zulfahmi, Z. (2013). Penanda Dna Untuk Analisis Genetik Tanaman. Jurnal Agroteknologi, 3(2), 41–52.




DOI: https://doi.org/10.15575/biodjati.v4i2.4741

Refbacks

  • There are currently no refbacks.


Indexing By :

      

      

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 

View My Stats