Survival Responses of Two Termite Genera to Environmental Stressors as Bioindicators of Climate Change

Authors

  • Eko Kuswanto Department of Biology Education, Faculty of Tarbiyah and Teacher Training, Universitas Islam Negeri Raden Intan Lampung, Indonesia
  • Anisa Oktina Sari Pratama Department of Biology Education, Faculty of Tarbiyah and Teacher Training, Universitas Islam Negeri Raden Intan Lampung, Indonesia
  • Moh. Dwi Kurniawan Hasan Department of Biology Education, Faculty of Tarbiyah and Teacher Training, Universitas Islam Negeri Raden Intan Lampung, Indonesia
  • Aksel Fadly Masamanda Department of Biology Education, Faculty of Tarbiyah and Teacher Training, Universitas Islam Negeri Raden Intan Lampung, Indonesia
  • Zikri Al Rosyid Department of Biology Education, Faculty of Tarbiyah and Teacher Training, Universitas Islam Negeri Raden Intan Lampung, Indonesia
  • Ferry Andreansyah Department of Biology Education, Faculty of Tarbiyah and Teacher Training, Universitas Islam Negeri Raden Intan Lampung, Indonesia
  • Nico Okta Arniansyah Department of Biology Education, Faculty of Tarbiyah and Teacher Training, Universitas Islam Negeri Raden Intan Lampung, Indonesia

DOI:

https://doi.org/10.15575/biodjati.v10i2.48347

Keywords:

bioindicator, environmental stressors, survivability, termites

Abstract

Termites are sensitive to environmental fluctuations and hold potential as bioindicators of climate change. This study evaluated the survivability of Nasutitermes and Macrotermes under controlled variations in temperature, relative humidity (RH), and CO₂ concentration. Laboratory experiments were conducted using eleven temperature levels (0–50°C), seven RH levels (40–100%), and four CO₂ concentrations (500–2000 ppm). Each treatment was replicated three times with 50 worker termites per replicate. Survivability, measured as percent survival after one hour of exposure, was analyzed by one-way ANOVA followed by Tukey’s HSD test (p < 0.05). The results indicated that both genera exhibited sharp declines in survival under temperature extremes and elevated CO₂. Optimal survivability for Nasutitermes and Macrotermes occurred at moderate temperatures (25–35°C), relative humidity (60–80%), and ambient CO₂ levels (500 ppm), while extreme conditions significantly increased mortality. The study highlights species-specific tolerance thresholds and confirms that environmental stressors directly affect termite physiology and behavior. These results confirm termites’ potential as reliable bioindicators, providing a practical tool for monitoring ecosystem responses to climate stress and informing strategies for sustainable ecosystem management.

References

Ahmad, F., Fouad, H., Liang, S. Y., Hu, Y., & Mo, J. C. (2021). Termites and Chinese agricultural system: applications and advances in integrated termite management and chemical control. In Insect Science (Vol. 28, Issue 1). DOI:10.1111/1744-7917.12726.

Allen G. Gibbs, A. K. L. A. J. A. A. (1998). Effects Of Temperature On Cuticular Lipids And Water Balance In A Desert Drosophila: Is Thermal Acclimation Beneficial? The Journal of Experimental Biology, 201, 71–80.

Arango, R. A., Schoville, S. D., Currie, C. R., & Carlos-Shanley, C. (2021). Experimental Warming Reduces Survival, Cold Tolerance, and Gut Prokaryotic Diversity of the Eastern Subterranean Termite, Reticulitermes flavipes (Kollar). Frontiers in Microbiology, 12. DOI: 10.3389/fmicb.2021.632715.

Ashton, L. A., Griffiths, H. M., Parr, C. L., Evans, T. A., Didham, R. K., Hasan, F., Teh, Y. A., Tin, H. S., Vairappan, C. S., & Eggleton, P. (2019). Termites mitigate the effects of drought in tropical rainforest. Science, 363(6423), 174–177. DOI: 10.1126/science.aau9565.

Bignell, D. E., Roisin, Y., & Lo, N. (2011). Biology of termites: A Modern synthesis. In Biology of Termites: A Modern Synthesis. Springer Netherlands. DOI: 10.1007/978-90-481-3977-4.

Chen, C., Singh, A. K., Yang, B., Wang, H., & Liu, W. (2023). Effect of termite mounds on soil microbial communities and microbial processes: Implications for soil carbon and nitrogen cycling. Geoderma, 431. DOI: 10.1016/j.geoderma.2023.116368.

Chouvenc, T. (2020). Limited survival strategy in starving subterranean termite colonies. Insectes Sociaux, 67(1), 71–82. DOI: 10.1007/s00040-019-00729-5.

Constantino, R. (2021). Termite taxonomy from 2001–2021: The contribution of Zootaxa. In Zootaxa (Vol. 4979, Issue 1, pp. 222–223). Magnolia Press. DOI: 10.11646/zootaxa.4979.1.22.

Eggleton P, Bignell D, Hauser S, Dibog L, Norgrove L, Madong B (2002) Termite diversity across an anthropogenic disturbance gradient in the humid forest zone of West Africa. Agric Ecosyst Environ 90:189–202.

Eggleton, P. (2020). The state of theworld’s insects. In Annual Review of Environment and Resources (Vol. 45, pp. 61–82). Annual Reviews Inc. DOI: 10.1146/annurev-environ-012420-050035.

Haryanto, H. C., & Prahara, S. A. (2019). Perubahan Iklim, Siapa Yang Bertangg[p/

ung Jawab? Insight: Jurnal Ilmiah Psikologi, 21(2). DOI: 10.26486/psikologi.v21i2.811.

Hassan, A., Li, Z., Zhou, X., Mo, J., & Huang, Q. (2024). Termite management by entomopathogenic fungi: Recent advances and future prospects. In Current Research in Biotechnology (Vol. 7). DOI: 10.1016/j.crbiot.2024.100183.

Hoffmann, A. A., Chown, S. L., & Clusella-Trullas, S. (2013). Upper thermal limits in terrestrial ectotherms: How constrained are they? Functional Ecology, 27(4), 934–949. DOI: 10.1111/j.1365-2435.2012.02036.x.

Indrayani, Y. (2022). Peran Rayap dalam Keseimbangan Ekosistem. Prosiding Seminar Nasional Penerapan Ilmu Pengetahuan Dan Teknologi, 6(1).

Indrayani, Y., Yoshimura, T., Yanase, Y., Fujii, Y., & Imamura, Y. (2007). Evaluation of the temperature and relative humidity preferences of the western dry-wood termite Incisitermes minor (Hagen) using acoustic emission (AE) monitoring. Journal of Wood Science, 53(1), 76–79. DOI: 10.1007/s10086-006-0817-0.

IPCC. (2023). Summary for Policymakers. In: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland, pp. 1-34. DOI: 10.59327/IPCC/AR6-9789291691647.001.

Korb, J. (2003). Thermoregulation and ventilation of termite mounds. In Naturwissenschaften (Vol. 90, Issue 5, pp. 212–219). Springer Verlag. DOI: 10.1007/s00114-002-0401-4.

Korb, J., & Linsenmair, K. E. (2000). Thermoregulation of termite mounds: What role does ambient temperature and metabolism of the colony play? Insectes Sociaux, 47(4), 357–363. DOI: 10.1007/PL00001731.

Krishna, K., Grimaldi, D. A., & Krishna, V. (2013). Treatise On The Isoptera Of The World Volum E 7 r e f e r e nc e s a n d i n de X. Bulletin OF THE American Museum OF Natural HISTORY Number, 377.

Kuswanto, E., & Pratama, A. O. S. (2012). Sebaran dan Ukuran Koloni Sarang Rayap Pohon Nasutitermes Sp (Isoptera: Termitidae) Di Pulau Sebesi Lampung Sebagai Sumber Belajar Biologi. BIOEDUKASI (Jurnal Pendidikan Biologi), 3(2). DOI:10.24127/bioedukasi.v3i2.261.

Mandala, M., Nurhayati, D., & Dhokhikah, Y. (2020). Persepsi dan Strategi Adaptasi Masyarakat Terhadap Perubahan Iklim di Kawasan Asia Tenggara Perceptions and Strategies for Community Adaptation to Climate Change in the Southeast Asian Region. JurnalLingkunganBerkelanjutan, 1(1).

McDonald, J., Fitzgerald, C., Hassan, B., & Morrell, J. J. (2022). Thermal tolerance of an invasive drywood termite, Cryptotermes brevis (Blattodea: Kalotermitidae). Journal of Thermal Biology, 104. DOI: 10.1016/j.jtherbio.2022.103199.

Myers, T. A., Maibach, E. W., Woods Placky, B., Henry, K. L., Slater, M. D., & Seitter, K. L. (2020). Impact of the climate matters program on public understanding of climate change. Weather, Climate, and Society, 12(4), 863–876. DOI: 10.1175/WCAS-D-20-0026.1.

Nakayama, T., Yoshimura, T., & Imamura, Y. (2004). The optimum temperature-humidity combination for the feeding activities of Japanese subterranean termites. Journal of Wood Science, 50(6), 530–534. DOI: 10.1007/s10086-003-0594-y.

Neoh, K. B., & Lee, C. Y. (2009). Flight activity of two sympatric termite species, macrotermes gilvus and macrotermes carbonarius (Termitidae: Macrotermitinae). Environmental Entomology, 38(6). DOI: 10.1603/022.038.0623.

Nurhayati, D., Dhokhikah, Y., & Mandala, M. (2020). Persepsi dan Strategi Adaptasi Masyarakat Terhadap Perubahan Iklim di Kawasan Asia Tenggara. JURNAL PROTEKSI: Jurnal Lingkungan Berkelanjutan, 1(1).

Parulian, J., Parulian Manurung, J., Boedoyo, M. S., & Sundari, S. (2022). Pajak Karbon di Indonesia Dalam Upaya Mitigasi Perubahan Iklim dan Pertumbuhan Ekonomi Berkelanjutan. Jurnal Kewarganegaraan, 6(2).

Risch, A. C., Anderson, T. M., & Schütz, M. (2012). Soil CO 2 Emissions Associated with Termitaria in Tropical Savanna: Evidence for Hot-Spot Compensation. Ecosystems, 15(7), 1147–1157. DOI: 10.1007/s10021-012-9571-x.

Rust, M. K., & Cabrera, B. L. (1994). The Effects of Temperature and Humidity on the Movement of the Western Drywood Termite.

Scheffrahn, R. H., Mullins, A. J., Krecek, J., Chase, J. A., Mangold, J. R., Myles, T., Nishimura, T., Setter, R., Cannings, R. A., Higgins, R. J., Lindgren, B. S., Constantino, R., Issa, S., & Kuswanto, E. (2015). Global elevational, latitudinal, and climatic limits for termites and the redescription of rugitermes laticollis snyder (Isoptera: Kalotermitidae) from the andean highlands. Sociobiology, 62(3), 426–438. DOI: 10.13102/sociobiology.v62i3.793.

Sinclair, B. J., Marshall, K. E., Sewell, M. A., Levesque, D. L., Willett, C. S., Slotsbo, S., Dong, Y., Harley, C. D. G., Marshall, D. J., Helmuth, B. S., & Huey, R. B. (2016). Can we predict ectotherm responses to climate change using thermal performance curves and body temperatures? In Ecology Letters (Vol. 19, Issue 11, pp. 1372–1385). Blackwell Publishing Ltd. DOI: 10.1111/ele.12686.

Steward, R. C. (1983). The Effects Of Humidity, Temperature And Acclimation On The Feeding, Water Balance And Reproduction Of Dry Wood Termites (Cryptotermes). Entomologia Experimentalis et Applicata, 33(2), 135–144. DOI: 10.1111/j.1570-7458.1983.tb03249.x.

Susilawati, S. (2021). Dampak Perubahan Iklim Terhadap Kesehatan. Electronic Journal Scientific of Environmental Health And Disease, 2(1). DOI: 10.22437/esehad.v2i1.13749.

Terblanche, J. S., & Chown, S. L. (2006). The relative contributions of developmental plasticity and adult acclimation to physiological variation in the tsetse fly, Glossina pallidipes (Diptera, Glossinidae). In Journal of Experimental Biology (Vol. 209, Issue 6, pp. 1064–1073). DOI: 10.1242/jeb.02129.

Turner, J. S. (2001). On the mound of Macrotermes michaelseni as an organ of respiratory gas exchange. Physiological and Biochemical Zoology, 74(6), 798–822. DOI: 10.1086/323990.

Van Valkengoed, A. M., Perlaviciute, G., & Steg, L. (2024). From believing in climate change to adapting to climate change: The role of risk perception and efficacy beliefs. Risk Analysis, 44(3), 553–565. DOI: 10.1111/risa.14193.

Wang, D., Yuan, C., Zhang, X., Wei, X., Yue, K., Ni, X., & Wu, F. (2024). Precipitation rather than temperature primarily drives global termite effects on litter decomposition. Catena, 236. DOI: 10.1016/j.catena.2023.107778.

Woon, J. S., Atkinson, D., Adu-Bredu, S., Eggleton, P., & Parr, C. L. (2022). Termites have wider thermal limits to cope with environmental conditions in savannas. Journal of Animal Ecology, 91(4), 766–779. DOI: 10.1111/1365-2656.13673

Woon, J. S., Boyle, M. J. W., Ewers, R. M., Chung, A., & Eggleton, P. (2019). Termite environmental tolerances are more linked to desiccation than temperature in modified tropical forests. Insectes Sociaux, 66(1), 57–64. DOI: 10.1007/s00040-018-0664-1

Downloads

Published

30-11-2025

How to Cite

Kuswanto, E., Pratama, A. O. S., Moh. Dwi Kurniawan Hasan, Aksel Fadly Masamanda, Zikri Al Rosyid, Ferry Andreansyah, & Nico Okta Arniansyah. (2025). Survival Responses of Two Termite Genera to Environmental Stressors as Bioindicators of Climate Change. Jurnal Biodjati, 10(2), 261–274. https://doi.org/10.15575/biodjati.v10i2.48347

Issue

Section

Articles

Citation Check