Bioprospecting of Potential Microorganisms as Agents for Biodiesel Production from Sago Pulp Waste Feedstock

Authors

  • Alice Chaela Lethulur Department of Biology, Faculty of Science and Technology, Universitas Pattimura, Indonesia
  • Cecilia Anna Seumahu Department of Biology, Faculty of Science and Technology, Universitas Pattimura, Indonesia
  • Edwin Thomas Apituley Department of Biotechnology, Faculty of Science and Technology, Universitas Pattimura, Indonesia

DOI:

https://doi.org/10.15575/biodjati.v10i2.48431

Keywords:

accumulation, biodiesel, cellulose, lipid, saccharification, sago

Abstract

The rising global energy demand and environmental issues associated with fossil fuel use have accelerated interest in renewable alternatives, such as biodiesel. This study aimed to provide a preliminary screening of potential indigenous microorganisms among isolates with high ability to saccharify lignocellulosic sago pulp waste, an abundant, non-food biomass in Maluku, and to accumulate lipids. Laboratory experiments were conducted to isolate, characterize (macro- and microscopically), saccharify, and accumulate lipids. Bacterial isolates were evaluated for saccharification ability using two parameters: the cellulolytic index (CI), determined by the clear zone on solid CMC media, and reducing sugar production in modified liquid CMC media using pretreated sago waste, measured by Benedict’s test. Yeast and mold isolates were assessed for lipid accumulation through Sudan Black B staining and gravimetric lipid extraction under nitrogen-limited conditions. Results identified four bacterial isolates capable of saccharification, with isolate BAS 1B showing the highest cellulolytic index, and all isolates produced detectable reducing sugars by Benedict’s test. All yeast and mold isolates accumulated intracellular lipids, with YAS 2 and KAS 2 isolates accumulating the highest lipid compared to the positive control (Saccharomyces cerevisiae). As this study was based on a single-point observation (n=1), the results are exploratory and should be interpreted cautiously. Nevertheless, isolates BAS 1B, YAS 2, and KAS 2 show promising potential for further biodiesel-related research using lignocellulosic waste. Further studies with replication and quantitative validation are required prior to any industrial consideration

References

Andayani, I., Gea, K., & Manao, L.H. (2024). Pengaruh penggunaan ampas sagu sebagai pupuk kompos terhadap pertumbuhan tanaman kacang hijau (Vigna radiata L.). Jurnal Sapta Agrica, 3(1) : 26–38. DOI: 10.57094/jsa.v3i1.1860

Austin, K. G., Schwantes, A., Gu, Y., & Kasibhatla, P. S. (2019). What causes deforestation in Indonesia?. Environ. Res. Lett., 14(2) : 024007. DOI: 10.1088/1748-9326/aaf6db

Asben A. & Irawadi T. J. (2013). Isolation and Identification of Glucoamylase Producer Fungus from Sago Hampas. International journal on advance science engineering information technology, 3(5) : 330-334. DOI: 10.18517/ijaseit.3.5.337

Badan Pusat Statistik. (2024). Jumlah Penduduk Pertengahan Tahun (Ribu Jiwa), 2022-2024. Retrieved on May 20, 2025, from https://www.bps.go.id/id/statistics-table/2/MTk3NSMy/jumlah-penduduk-pertengahan-tahun--ribu-jiwa-.html

Barnett, L.H. & Hunter, B.B. (1998). Illustrated Genera of Imperfect Fungi (4th ed.). The American Phytopathological Society (Amer Phytopathological Society Press). Retrieved on April 02, 2025, from https://www.academia.edu/31570962/Book_Illustrated_Genera_of_Imperfect_Fungi

Breed, R. S., Murray, E. G. D., & Smith, N. R (Eds). (1957). Bergey’s Manual of Determinative Bacteriology (7th ed.) [PDF]. The Williams & Wilkins Company. DOI: 10.5962/bhl.title.10728

Cahya, Kawuri, & Wijana. (2022). Potensi Bacillus sp. Sebagai Agen Antagonis Terhadap Athelia rolfsii Penyebab Busuk Pangkal Batang Kedelai (Glycine max L.). Metamorfosa: Journal of Biological Sciences, 9(2) : 325-337. DOI: 10.24843/metamorfosa.2022.v09.i02.p12

Carlson, K., Curran, L., Asner, G., Pittman, A., Trigg, S., & Adeney, J. (2012). Carbon emissions from forest conversion by Kalimantan oil palm plantations. Nature Clim Change, 3 : 283–287. DOI: 10.1038/nclimate1702

Chavez, C. M., Groenewald, M., Hulfachor, A. B., Kpurubu, G., Huerta, R., Hittinger, C. T., & Rokas, A. (2024). The cell morphological diversity of Saccharomycotina yeasts. FEMS Yeast Research, 24 : 1–9. DOI: 10.1093/femsyr/foad055

Cho, H. U., & Park, J. M. (2018). Biodiesel production by various oleaginous microorganisms from organic wastes. Bioresource Technology, 256 : 502–508. DOI: 10.1016/j.biortech.2018.02.010

Choi, Y.W., Hodgkiss, I.J., dan Hyde, K.D. (2005). Enzyme Production by Endophytes of Brucea javanica. Journal of Agricultural Technology, 1: 55-66. Retrieved from http://www.ijat-aatsea.com/pdf/Choi%20page%2055-66.pdf

De Vos, P., Garrity, G. M., Jones, D., Krieg, N. R., Ludwig, W., Rainey, F. A., Schleifer, K-H., & Whitman, W.B (Eds.). (2009). Bergey’s Manual of Determinative Bacteriology : Volume 3: The Firmicutes (2nd ed.) [PDF]. Springer. DOI: 10.1007/b92997

Faizah M., Ardyati T., & Suharjono. (2020). Isolation and Identification of Indigenous Cellulolytic Bacteria from Sago Pith Waste at Palopo, South Sulawesi, Indonesia. Journal of Experimental Life Science, 10(2) : 132-137. Retrieve from https://www.semanticscholar.org/reader/8fa6e7a099d137e10e546c26e3a81048832e31d8

Filonchyk, M., Peterson, M.P., Zhang, L., Hurynovich, V., & He, Y. (2024). Greenhouse gases emissions and global climate change: Examining the influence of CO2, CH4, and N2O. Science of The Total Environment, 935 : 173359. DOI: 10.1016/j.scitotenv.2024.173359

Garay, L. A, Boundy-mills, K. L., & German, J. B. (2014). Mechanistic Approach and Future Perspectives. Journal of Agricultural and Food Chemistry, 62 : 2709–2727. DOI: 10.1021/jf4042134

Goldenbogen, B., Giese, W., Hemmen, M., Uhlendorf, J., Herrmann, A., & Klipp, E. (2016). Dynamics of Cell Wall Elasticity Pattern Shapes The Cell During Yeast Mating Morphogenesis. Open Biol, 6 : 160136. DOI: 10.1098/rsob.160136

Hamka, Rahman M., & Susanti T.A. (2016). Uji Aktivitas Selulase Bakteri Selulolitik Yang Berasal Dari Tandan Kosong Kelapa Sawit. Buletin Loupe 13(1): 1-10. Retrieved on March 20, 2025, from https://www.neliti.com/publications/331107/uji-aktivitas-selulase-bakteri-selulotik-yang-berasal-dari-tandan-kosong-kelapa#cite

Hebbale, D., Bhargavi, R., & Ramachandra, T. V. (2019). Saccharification of Macroalgal Polysaccharides Through Prioritized Cellulase Producing Bacteria. Heliyon, 5(3) : e01372. DOI: 10.1016/j.heliyon.2019.e01372

Hidayah, M. R. (2025). Dampak Perkebunan Kelapa Sawit terhadap Lingkungan: Menyeimbangkan Risiko Ekologis dengan Keuntungan Ekonomi. Globe: Publikasi Ilmu Teknik, Teknologi Kebumian, Ilmu Perkapalan, 3(1) : 90–94. DOI: 10.61132/globe.v3i1.763

Kadosh, D., & Mundodi, V. (2020). A re-evaluation of the relationship between morphology and pathogenicity in Candida species. Journal of Fungi, 6(1) : 16–18. DOI: 10.3390/jof6010013

Kidd, S., Halliday, C., Alexiou, H., & Ellis, D. (2016). Descriptions of medical fungi (3rd ed.). Retrieved from https://www.adelaide.edu.au/mycology/ua/media/1596/fungus3-book.pdf?utm_

Mukaremera, L., Lee, K. K., Mora-Montes, H. M., & Gow, N. A. R. (2017). Candida albicans yeast, pseudohyphal, and hyphal morphogenesis differentially affects immune recognition. Frontiers in Immunology, 8 : 1–12. DOI: 10.3389/fimmu.2017.00629

Numberi, J. J. (2022). Analisis Limbah Ampas Sagu Sebagai Sumber Bahan Bakar Bioetanol. G-Tech: Jurnal Teknologi Terapan, 6(1) : 98–103. DOI: 10.33379/gtech.v6i1.2603

Pratiwi, Z. & Hufri. (2020). Pembuatan alat ukur kadar gula darah berdasarkan tingkat kekeruhan spesimen urin menggunakan sensor warna TCS230 dan photodioda dengan tampilan LCD. Pillar of Physics, 13 : 18-25. DOI: 10.24036/7591171074

Putra, P.A.V., & Sanjaya, I.G.M. (2020). Pengaruh Waktu Sakarifikasi dan Fermentasi pada Produksi Bioetanol dari Rumput Alang-Alang (Imperata cylindrica) Menggunakan Metode SSF (Simultaneous Saccharification and Fermentation) The Influence of Saccharification and Fermentation Times to Producing. UNESA Journal of Chemistry, 9(2) : 137-143. DOI: 10.26740/ujc.v9n2.p137-143

Roy, M. M., Wang, W., & Alawi, M. (2014). Performance and emissions of a diesel engine fueled by biodiesel-diesel, biodiesel-diesel-additive and kerosene-biodiesel blends. Energy Conversion and Management, 84 : 164–173. DOI: 10.1016/j.enconman.2014.04.033

Stepanus, J. Bin. (2023). Ekstraksi Komponen Lipid dari Mikroalga Nannochloropsis oculata dan Nitzschia sp. dengan Metode Sokletasi dan Bligh Dyer. KOVALEN: Jurnal Riset Kimia, 9(3) : 212–223. DOI: 10.22487/kovalen.2023.v9.i3.16596

Sutari, N. W. S. (2020). Isolasi dan Identifikasi Morfologi Jamur Selulolitik dari Limbah Rumah Tangga di Desa Sanur Kauh, Bali. Agrovigor: Jurnal Agroekoteknologi, 13(2) : 100–105. DOI: 10.21107/agrovigor.v13i2.7443

Syadik, F., Satria, & Youlandari. (2022). Kandungan Protein dan Serat Kasar Ampas Sagu (Metroxylon sago) dengan Metode Kimia sebagai Alternatif Pakan Ruminansia. Jurnal Sains dan Teknologi Peternakan, 3(2) : 49-54. DOI: 10.31605/jstp.v3i2.1593

Tampitak S., Louhasakul Y., Cheirsilp B., & Prasertsan P. (2015). Lipid Production from Hemicellulose and Holocellulose Hydrolysate of Palm Empty Fruit Bunches by Newly Isolated Oleaginous Yeasts. Applied Biochemistry and Biotechnology, 176(6) : 1801-1814. DOI: 10.1007/s12010-015-1679-y

Thakur, M. S., Prapulla, S. G., & Karanth, N. G. (1989). Estimation of intracellular lipids by the measurement of absorbance of yeast cells stained with Sudan Black B. Enzyme and Microbial Technology, 11(4) : 252–254. DOI: 10.1016/0141-0229(89)90101-4

Walker K., Skelton H., & Smith K. (2002). Cutaneous lesions showing giant yeast forms of Blastomyces dermatitidis. Journal of Cutaneous Pathology, 29(10) : 616-618. DOI: 10.1034/j.1600-0560.2002.291009.x

Yunsari, S., Rusdianasari, & Husaini, A. (2019). CPO Based Biodiesel Production Using Microwaves Assisted Method. Journal of Physics: Conference Series, 1167(1) : 012036. DOI: 10.1088/1742-6596/1167/1/012036

Downloads

Published

30-11-2025

How to Cite

Lethulur, A. C., Seumahu, C. A., & Apituley, E. T. (2025). Bioprospecting of Potential Microorganisms as Agents for Biodiesel Production from Sago Pulp Waste Feedstock . Jurnal Biodjati, 10(2), 361–377. https://doi.org/10.15575/biodjati.v10i2.48431

Issue

Section

Articles

Citation Check