Antioxidant, Antibacterial Activity and GC-MS Analysis of Extract of Giant Forest Ant Dinomyrmex gigas (Latreille, 1802)


Evana - Evana(1*), Pratiwi Pratiwi(2), Ahmad Fathoni(3), Oscar Efendi(4), Andria Agusta(5)

(1) Research Center for Biology, Indonesian Institute of Sciences Jl. Raya Jakarta-Bogor Km. 46, Cibinong, Bogor 16911, Indonesia, Indonesia
(2) Research Center for Biology, Indonesian Institute of Sciences Jl. Raya Jakarta-Bogor Km. 46, Cibinong, Bogor 16911, Indonesia, Indonesia
(3) Research Center for Biology, Indonesian Institute of Sciences Jl. Raya Jakarta-Bogor Km. 46, Cibinong, Bogor 16911, Indonesia, Indonesia
(4) Research Center for Biology, Indonesian Institute of Sciences Jl. Raya Jakarta-Bogor Km. 46, Cibinong, Bogor 16911, Indonesia, Indonesia
(5) Research Center for Biology, Indonesian Institute of Sciences Jl. Raya Jakarta-Bogor Km. 46, Cibinong, Bogor 16911, Indonesia, Indonesia
(*) Corresponding Author

Abstract


 Giant forest ant Dinomyrmex gigas is one of the largest ants species in the world, native to the rain forests of Southeast Asia. It is known that ants have glands that produce chemical compounds that inhibit the growth of microbes. Therefore, it is necessary to deter-mine the antioxidant and antibacterial activities as well as identify the chemical compounds of D. gigas extract. D. gigas was extracted successively with n-hexane, ethanol and methanol. The antioxidant activity was evaluated by determination of the half-maximal inhibi-tory concentration (IC50) values while the antibacterial activities of the extracts were determined by measuring the minimum inhibitory concentration (MIC). The results exhibited that the IC50 values of n-hexane, ethanolic and methanolic extracts were 336.18±0.0984, 89.16±0.0219 and 90.72±0.0894 μg/mL respectively. The ethanolic extract exhibited the highest AAI value (0.34) followed by metha-nolic extract (0.33) and n-hexane extract (0.09). Based on AAI val-ues, the extracts were classified as moderate antioxidants. The best MIC values were 625 μg/mL for both ethanolic and methanolic ex-tracts against S. aureus, while MIC values of all extracts against E. coli were >625 μg/mL. Based on MIC values, all of the extracts presented weak activity against both S. aureus and E.coli. The GC-MS analysis showed that there are up to 30 compounds construct-ed of the ethanolic extract. Three major compounds are ethyl oleate  (29.78%), n-hexadecanoic acid (17.54%) and oleic acid (10.65%). 


Keywords


Ant, Dinomyrmex gigas, antibacterial, antioxidant.

Full Text:

PDF

References


Adetutu, A., Morgan, W. A. & Corcoran, O. (2011). Antibacterial, Antioxidant and Fibroblast Growth Stimulation Activity of Crude Extracts of Bridelia ferrugin-ea Leaf, a Wound-Healing Plant of Ni-geria. Journal of Ethnopharmacology, 133, 116–119.

Aparna, V., Kalarickal, V. & Mandal, P. K. (2012). Anti-Inflammatory Property of n-Hexadecanoic Acid: Structural Evi-dence and Kinetic Assessment. Chem Biol Drug Des, 80(3), 434–439.

Badr, G., Garraud, O., Daghestani, M., Al-khalifa, M. S. & Richard, Y. (2012). Human Breast Carcinoma Cells are In-duced to Apoptosis by Samsum Ant Venom Through an IGF-1-Dependant pathway, PI3K/AKT and ERK signal-ing. Cellular Immunology, 273, 10–16.

Bot, A. N. M., Lechner, D. O., Finster, K., Maile, R. & Boomsma, J. J. (2002). Var-iable Sensitivity of Fungi and Bacteria to Compounds Produced by the Meta-pleural Glands of Leaf-Cutting Ants. Insectes Soc., 49, 363–370.

Bouftira, I., Abdelly, C. & Sfar, S. (2007). Identification of a Naturally Occurring 2,6-bis(1.1-dimethylethyl)-4-meth-ylphenol from Purple Leaves of the Halophyte Plant Mesembryanthemum crystallinum. African Journal of Bio-technology, 6(9), 1136–1139.

Capitan-vallvey, L. F., Valencia, Mequias, C. & Nicolas, E. A. (2002). Flow-through Sensor for Determination of Butylated Hydroxytoluene in Cosmetics. Analyti-cal Letters, 35(1), 65–81.

Castillo, C., Chen, H., Graves, C., Maison-nasse, A., Le, Y. & Plettner, E. (2012). Biosynthesis of Ethyl Oleat, a Primer Pheromone, in the Honey Bee (Apis mellifera L .). Insect Biochemistry and Molecular Biology, 42(6), 404–416.

Cerda, X., Oudenhove, L. Van, Bernstein, C., & Boulay, R. R. (2014). A List of and Some Comments about the Trail Pher-omones of Ants. Natural Product Com-munications, 9(8), 1115–1122.

Das, K., Tiwari, R. K. S. & Shrivastava, D. K. (2010). Techniques for Evaluation of Medicinal Plant Products as Antimicro-bial Agent: Current Methods and Future Trends. Journal of Medicinal Plants Re-search, 4(2), 104–111.

Dewanjee, S., Gangopadhyay, M., Bhat-tacharya, N., Khanra, R. & Dua, T. K. (2015). Bioautography and its Scope in the Field of Natural Product Chemistry. Journal of Pharmaceutical Analysis, 5(2), 75–84.

Dhankhar, S., Kumar, S., Dhankhar, S. & Ya-dav, J. P. (2012). Antioxidant Activity of Fungal Endophytes Isolated From Salvadora oleoides Decne. Int J Pharm Pharm Sci., 4(2), 380–385.

Ebaid, H., Al-khalifa, M., Isa, A. M. & Gadoa, S. (2012). Bioactivity of Samsum ant (Pachycondyla sennaarensis ) Venom Against Lipopolysaccharides Through Antioxidant and Upregulation of Akt1 Signaling in Rats. Lipids in Health and Disease, 11(93), 1–10.

Ebaid, H., Al-tamimi, J., Hassan, I., Alhazza, I., & Al-khalifa, M. (2014). Antioxidant Bioactivity of Samsum Ant (Pachy-condyla sennaarensis) Venom Protects against CCL 4 -Induced Nephrotoxicity in Mice. Oxidative Medicine and Cellu-lar Longevity, 1–9.

Epand, R. M., Walker, C., Epand, R. F., & Magarvey, N. A. (2016). Molecular Mechanisms of Membrane Targeting Antibiotics. BBA - Biomembranes, 1858(5), 980–987.

Falotico, T., Labruna, M. B., Verderane, M. P., De Resende, B. D., Izar, P. & Ottoni, E. B. (2007). Repellent Efficacy of Formic Acid and the Abdominal Secretion of Carpenter Ants (Hymenoptera: Formi-cidae ) Against Amblyomma Ticks) Aca. J. Med. Entomol, 44(4), 718–721.

Fletcher, R. D., Gilbertson, J. R., Albers, A. C. & White, J. D. (1981). Inactivation of Mycoplasmas by Long-Chain Alcohols. Antimicrob. Agents Chemother, 19(5), 917–921.

Foti, M. C. (2007). Antioxidant Properties of Phenols. Journal of Pharmacy and Pharmacology, 59, 1673–1685.

Haque, M. N., Chowdhury, R., Islam, K. M. S. & Akbar, M. A. (2009). Propionic Acid is an Alternative to Antibiotics in Poul-try Diet. Bang. J. Anim. Sci., 38(1&2), 115–122.

Ibtissem, B., Imen, M. & Souad, S. (2010). Dosage of 2,6-Bis (1.1-Dimethyle-thyl)-4-Methylphenol (BHT) in the Plant Extract Mesembryanthemum crys-tallinum. Journal of Biomedicine and Biotechnology, 1–5.

Inagaki, H., Akagi, M., Imai, H. T., Taylor, R. W. & Kubo, T. (2004). Molecular Clon-ing and Biological Characterization of Novel Antimicrobial Peptides, Pilosulin 3 and Pilosulin 4, from a Species of the Australian Ant Genus Myrmecia. Ar-chives of Biochemistry and Biophysics, 428, 170–178.

Johnson, R. N., Agapow, P.-M., & Crozier, R. H. (2003). A Tree Island Approach to Inferring Phylogeny in the Ant Subfam-ily Formicinae, with Especial Reference to the Evolution of Weaving. Molecular Phylogenetics and Evolution, 29, 317– 330.

Kanzler, C., Haase, P. T., Schestkowa, H. & Kroh, L. W. (2016). Antioxidant Prop-erties of Heterocyclic Intermediates of the Maillard Reaction and Structural-ly Related Compounds. J. Agric. Food Chem, 64, 7829–7837.

Kelm, G. R. & Wickett, R. R. (2017). The Role of Fatty Acids in Cosmetic Tech-nology. Fatty Acids. Elsevier Inc.

Kumar, P. P., Kumaravel, S. & Lalitha, C. (2010). Screening of Antioxidant Activ-ity, Total Phenolics and GC-MS Study of Vitex negundo. Afr. J. Biochem. Res., 4(7), 191–195.

Lenz, E. L., Krasnec, M. O. & Breed, M. D. (2012). Identification of Undecane as an Alarm Pheromone of the Ant Formica argentea. J Insect Behav, 26, 101–108.

Ma’arif, B., Agil, M. & Laswati, H. (2016). Phytochemical Assesment on n-Hexane Extract and Fractions of Marsilea cre-nata Presl. Leaves Through GC-MS. Trad. Med. J., 21(2), 77–85.

Marin, H. F., Zimmerman, J. K., Rehner, S. A. & Wcislo, W. T. (2006). Active Use of the Metapleural Glands by Ants in Con-trolling Fungal Infection. Proc. R. Soc. B, 273, 1689–1695.

Mendonca, A. de L., da Silva, C. E., de Mes-quita, F. L. T., da Silva Campos, Rous-seau Do Nascimento, R. R., de Azeve-do Ximenes, E. C. P. & Sant Ana, A. E. G. (2009). Antimicrobial Activities of Components of the Glandular Secre-tions of Leaf Cutting Ants of the Genus Atta. Antonie van Leeuwenhoek, 95, 295–303.

Mizunami, M., Yamagata, N. & Nishino, H. (2010). Alarm Pheromone Processing in the Ant Brain: an Evolutionary Perspec-tive. Frontiers in Behavioral Neurosci-ence, 4, 1–9.

Molyneux, P. (2004). The Use of the Stable Free Radical diphenylpicryl-hydrazyl (DPPH) for Estimating Antioxidant Activity. Songklanakarin J. Sci. Technol., 26(2), 211–219.

Moreau, S. J. M. (2013). ‘It stings a bit but it cleans well’: Venoms of Hymenoptera and their Antimicrobial Potential. Jour-nal of Insect Physiology, 59, 186–204.

Orivel, J., Redeker, V., Caer, L., Krier, F., Longeon, A., Dejean, A., … Rossier, J. (2001). Ponericins, New Antibacterial and Insecticidal Peptides from the Ven-om of the Ant Pachycondyla goeldii. J.Biol. Chem, 276(21), 17823–17829.

Pessini, G. L., Filho, B. P. D., Nakamura, C. V. & Cortez, D. A. G. (2003). Antibac-terial Activity of Extracts and Neolig-nans from Piper regnellii (Miq.) C. DC. var. pallescens (C.DC.) Yunck. Mem Inst Oswaldo Cruz, 98(8), 1115–1120.

Pfeiffer, M. & Linsenmair, K. E. (2007). Tro-phobiosis in a Tropical Rainforest on Borneo: Giant Ants Camponotus gigas (Hymenoptera: Formicidae ) Herd Wax Cicadas Bythopsyrna circulata (Auche-norrhyncha: Flatidae). Asian Myrme-cology, 1, 105–119.

Rahuman, A. A., Gopalakrishnan, G., Ghouse, S., Arumugam, S. & Himalayan, B. (2000). Effect of Feronia limonia on Mosquito Larvae. Fitoterapia, 71, 553– 555.

Scherer, R., & Godoy, H. T. (2009). Antioxi-dant activity index (AAI) by the 2,2-di-phenyl-1-picrylhydrazyl method. Food Chemistry, 112, 654–658.

Shen, L., Li, D., Feng, F. & Ren, Y. (2006). Nutritional Composition of Polyrhachis vicina Roger (Edible Chinese Black ant). Songklanakarin J.Sci. Technol., 28, 107–114.

Silva, M. T. G., Simas, S. M., Batista, T. G. F. M., Cardarelli, P. & Tomassini, T. C. B. (2005). Studies on Antimicrobial Activity, in vitro, of Physalis angulata L . (Solanaceae) Fraction and Physalin B Bringing out the Importance of As-say Determination. Mem Inst Oswaldo Cruz, 100(7), 779–782.

Stow, A. & Beattie, A. (2008). Chemical and Genetic Defenses Against Disease in Insect Societies. Brain, Behavior and Immunity, 22, 1009–1013.

Sullivan, D. C., Flowers, H., Rockhold, R., Herath, H. M. T. B. & Nanayakkara, N. P. D. (2009). Antibacterial Activity of Synthetic Fire Ant Venom: The Solen-opsins and Isosolenopsins. The Amer-ican Journal of the Medical Sciences, 338(4), 287–291.

Takao, L. K., Imatomi, M. & Gualtieri, S. C. J. (2015). Antioxidant Activity and Phenolic Content of Leaf Infusions of Myrtaceae species from Cerrado (Bra-zilian Savanna). Braz. J. Biol., 75(4), 948–952.

Tragust, S., Mitteregger, B., Barone, V., Kon-rad, M. & Ugelvig, L. V. (2013). Ants Disinfect Fungus-Exposed Brood by Oral Uptake and Spread of Their Poi-son. Current Biology, 23(1), 76–82.

Tranter, C. & Hughes, W. O. H. (2015). Acid, Silk and Grooming: Alternative Strate-gies in Social Immunity in Ants? Behav Ecol Sociobol, 69, 1687–1699.

Tyagi, T. & Agarwal, M. (2017). Phytochem-ical Screening and GC-MS Analysis of Bioactive Constituents in the E-thanolic extract of Pistia stratiotes L . and Eich-hornia crassipes ( Mart.) solms. Journal of Pharmacognosy and Phytochemistry, 6(1), 195–206.

Vadivel, E. & Gopalakrishnan, S. B. (2011). GC-MS analysis of some bioactive con-stituents of Mussaenda frondosa Linn. International Journal of Pharma and Bio Sciences, 2(1), 313–320.

Velayutham, P. & Karthi, C. (2015). GC-MS

Profile of In Vivo, In Vitro and Fungal Elicited In Vitro Leaves of Hybanthus Enneaspermus ( L .) F. MUELL. Int J Pharm Pharm Sci., 7(10), 260–267.

Vicas, S. I., Rugina, D. & Socaciu, C. (2012). Antioxidant Activity of European Mis-tletoe Viscus album Phytochemicals as Nutraceuticals- Global Approaches to Their Role in Nutrition and Health. (V. Rao, Ed.). Rijeka, Croatia: InTech.

Wang, J., Yue, Y.-D., Tang, F. & Sun, J. (2012). TLC Screening for Antioxidant Activity of Extracts from Fifteen Bamboo Spe-cies and Identification of Antioxidant Flavone Glycosides from Leaves of Bambusa. textilis McClure. Molecules, 17, 12297–12311.

Wei, C., Yen, P., Chang, S., Cheng, P. & Lo, Y. (2016). Antioxidative Activities of Both Oleic Acid and Camellia tenuifolia Seed Oil Are Regulated by the Transcription Factor DAF- 16 / FOXO in Caenorhab-ditis elegans. PLoS ONE, 11(6), 1–15.

Wilsanand, V., Varghese, P. & Rajitha, P. (2007). Therapeutics of insects and in-sect products in South Indian traditional medicine. Indian J Traditional Knowl-edge, 6(4), 563–568.

Wu, S., Long, C. & Kennelly, E. J. (2014). Structural diversity and bioactivities of natural benzophenones. Nat. Prod. Rep., 31, 1158–1174.

Yek, S. H. & Mueller, U. G. (2011). The Metapleural Gland of Ants. Biol. Rev., 86, 774–791.

Zeng, Y., Hu, X. P. & Suh, S.-J. (2016). Char-acterization of Antibacterial Activities of Eastern Subterranean Termite, Re-ticulitermes flavipes, against Human Pathogens. PLoS ONE, 11(9), 1–17.




DOI: https://doi.org/10.15575/biodjati.v4i2.5440

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Jurnal Biodjati



Indexing By :

      

      

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 

View My Stats