Effect of Subculture Frequency Toward Growth And Carotenoid Content from Tomato (Lycopersicon Esculentum Mill.) Callus


Reni Indriani(1*), Erma Prihastanti(2), Rini Budihastuti(3), Yulita Nurchayati(4)

(1) Department of Biology, Faculty of Science and Mathematics, Universitas Dipenogoro Jl. Prof. H. Soedharto, SH. Tembalang Semarang 50275; Telephone (024) 7474754, Indonesia
(2) Department of Biology, Faculty of Science and Mathematics, Universitas Dipenogoro Jl. Prof. H. Soedharto, SH. Tembalang Semarang 50275; Telephone (024) 7474754, Indonesia
(3) Department of Biology, Faculty of Science and Mathematics, Universitas Dipenogoro Jl. Prof. H. Soedharto, SH. Tembalang Semarang 50275; Telephone (024) 7474754, Indonesia
(4) Department of Biology, Faculty of Science and Mathematics, Universitas Dipenogoro Jl. Prof. H. Soedharto, SH. Tembalang Semarang 50275; Telephone (024) 7474754, Indonesia
(*) Corresponding Author

Abstract


Tomatoes (Lycopersicon esculentum Mill.) are a source of carotenoids they are easy to find. These compounds function as precursors of vitamin A, antioxidant, and prevent cancer. The extraction of carotenoid compounds for commercial products usually uses fresh plants, which are less efficient and require a lot of raw materials. The supply of these raw materials can be done through tissue culture. The frequency of subculture or supply of nutrients in tissue culture is very influential on the content of callus carotenoids produced. This study aimed to determine the effect of subculture frequency on growth, development and callus carotenoid content and to find out the right frequency of subculture to produce callus with optimal growth, development and carotenoid content. The design this study was a single Completely Randomized Design (CRD) with 4 treatments of subculture frequency and 5 replications. The data obtained were analyzed by ANOVA at the 95% test level followed by DMRT in case a significant different was found The results showed subculture frequency affected growth, development and carotenoid content of callus Lycopersicon esculentum. Mill. The most optimal treatment to induce growth and production of carotenoids in this study was treatment of thrice subculture while the most optimal treatment in inducing development was the twice subculture treatment.


Keywords


Lycopersicon esculentum Mill., hypocotyl, carotenoids, callus, subculture

Full Text:

PDF

References


Asmono, S. L. & Sari, V. K. (2016). Induksi Kalus dari Beberapa Kultivar Tanaman Kentang (Solanum tuberosum L.) Dat-aran Medium Secara in vitro Menggu-nakan Variasi Konsentrasi 2,4-D. Jurnal Ilmiah Inovasi, 16(2), 116–121.

Baldi, A. & Dixit, V. (2008). Enhanced Ar-temisinin Production by Cell Cultures of Artemisia annua. Current Trends in Biotechnology and Pharmacy, 2(2), 341–389.

Benítez-García, I., Vanegas-Espinoza, P. E., Meléndez-Martínez, A. J., Heredia, F. J., Paredes-López, O. & Del Villar-Martín-ez, A. A. (2014). Callus Culture Development of Two Varieties of Tagetes erecta and Carotenoid Produc-tion. Electronic Journal of Biotechnolo-gy, 17(3), 107–113.

Grzyb, M., Kalandyk, A., Waligórski, P. & Mikuła, A. (2017). The Content of Endogenous Hormones and Sug-ars in the Process of Early Somatic Embryogenesis in the Tree Fern Cyathea delgadii Sternb. Plant Cell, Tissue and Organ Culture, 129(3), 387–397.

Hariyati, M., Bachtiar, I. & Sedijani, P. (2016). Induksi Kalus Tanaman Krisan (Chrysanthemum morifolium) dengan Pemberian Benzil Amino Purin (BAP) dan Dichlorofenoksi Acetil Acid (2,4 D). Jurnal Penelitian Pendidikan IPA, 2(1), 89-96.

Hegazi, G. A., Zayed, M. S., Salem, H. M. & Ibrahim, W. M. (2014). Effect of Ex-plant Type and Sequential Subcultures on in vitro Multiple Shoots Formation of Jojoba. Journal of Applied Environ-mental and Biological Sciences, 4(4), 214–222.

Ikeuchi, M., Sugimoto, K. & Iwase, A. (2013). Plant Callus: Mechanisms of Induc-tion and Repression. Plant Cell, 25(9), 3159–3173.

Ikhtimami. (2012). Pengaruh Periode Subkul-tur Terhadap Kadar Saponin Akar Ram-but Tanaman Ginseng Jawa (Talinum paniculatum Gaertn.). Skripsi.

Isah, T. (2019). De novo in vitro Shoot Morphogenesis from Shoot Tip-induced Callus Cultures of Gymnema sylvestre (Retz.) R.Br. ex Sm. Biological Re-search, 52(3), 1-8.

Javanmardi, J. & Kubota, C. (2006). Varia-tion of Lycopene, Antioxidant Activity, Total Soluble Solids and Weight Loss of Tomato During Postharvest Storage. Postharvest Biology and Tech-nology, 41(2), 151–155.

Karlianda, N., Wulandari, R. S. & Mariani, Y. (2010). Pengaruh NAA dan BAP Terhadap Pengaruh NAA dan BAP Terhadap Perkembangan Subkultur

Gaharu (Aquilaria malaccensis Lamk.) (The Influence of NAA and BAP to the Development of Agar-wood (Aquilaria malaccensis Lamk.) Subcultures). Retrieved from http:// download.portalgaruda.org/article. php?article=32761&val=2332&title=-PENGARUH NAA DAN BAP TERH-ADAP PERKEMBANGAN SUBKUL-TUR GAHARU (Aquilaria malaccensis Lamk.).

Karyanti, J. & Tajuddin, T. (2014). Kemampuan Tumbuh Eksplan Jatropha curcas L. pada Media in vitro yang Mengandung Hormon IBA dan BA. Jurnal Bioteknologi & Biosains Indonesia (JBBI), 1(1), 1-8.

Krishna, H., Alizadeh, M., Singh, D., Singh, U., Chauhan, N., Eftekhari, M. & Sadh, R. K. (2016). Somaclonal Variations and their Applications in Horticultural Crops Improvement. 3 Biotech, 6(1), 1–18.

Lipavská, H., Mašková, P. & Vojvodová, P. (2011). Regulatory Dephosphoryla-tion of CDK at G2/M in Plants: Yeast Mitotic Phosphatase cdc25 Induc-es Cytokinin-like Effects in Transgenic Tobacco Morphogenesis. Annals of Botany, 107(7), 1071–1086.

Maemunah, Yusuf, R., Samudin, S., Yusran, Hawalina & Rini, N. S. (2019). Initia-tion of Onion Callus (Allium wakegia-raki) Varieties of Lembah Palu at Var-ious Light Intensities. IOP Conference Series: Earth and Environmental Science, 361(1).

Majda, M. & Robert, S. (2018). The Role of Auxin in Cell Wall Expansion. Interna-tional Journal of Molecular Sciences, 19(4), 1-21.

Maleta, H. S., Indrawati, R., Limantara, L. & Brotosudarmo, T. H. P. (2018). Ragam Metode Ekstraksi Karotenoid dari Sumber Tumbuhan dalam Dekade Terakhir (Telaah Literatur). Jurnal Rekayasa Kimia & Lingkungan, 13(1), 40–50.

Ming, N. J., Mostafiz, S. B., Johon, N. S., Zu-lkifli, N. S. A. & Wagiran, A. (2019). Combination of Plant Growth Regula-tors, Maltose, and Partial Desiccation Treatment Enhance Somatic Embryo-genesis in Selected Malaysian Rice Cul-tivar. Plants, 8(6), 1-15.

Muliati, T. Nurhidayah, N. (2017). Media on the in vitro Development Sansevieria macrophylla. Jom Faperta, 4(1), 1–13.

Naghmouchi, S., Khouja, M. L., Rejeb, M. N. & Boussaid, M. (2008). Effect of Growth Regulators and Explant Origin on in vitro Propagation of Ceratonia siliqua L. via Cuttings. Biotechnology, Agronomy and Society and Environ-ment, 12(3), 251–258. Nick, P. & Opatrný, Z. (2014). Preface. Plant Cell Monographs, 22.

Norshazila, S., Othman, R., Jaswir, I. & Yumi Zuhanis, H. H. (2017). Effect of Abiotic Stress on Carotenoids Accumulation in Pumpkin Plants Under Light and Dark Conditions. International Food Re-search Journal, 24(Suppl.), 387–394.

Noviati. (2014). Respon Pertumbuhan dan Produksi Senyawa Antioksidan pada Kalus Hibiscus sabdarifa L. dari Eksplan yang Berbeda Secara in vitro. Jurnal Sains dan Matematika, 22(1), 25-29.

Nurchayati, Y., Santosa, Nugroho, L. H. & Indrianto, A. (2018). Buletin Anatomi dan Fisiologi Volume 3 Nomor 1 Feb-ruari 2018 Penggunaan Kinetin, Asam Naftalen Asetat, dan Benzil Ad-enin dalam Induksi Kalus Kecubung (Datura metel L .) Secara In Vitro Use of Kinetin , Naphthalene Acetate Acid , and Benzyl Adenine in I. 3.

Olusegun, A., Makun, H. A., Ogara, I. M., Edema, M., Idahor, K. O., Oluwabam-iwo, B. F. & Eshiett, M. E. (2012). We are IntechOpen, the World’s leading Publisher of Open Access books Built by scientists, for scientists TOP 1%.

Intech, i(tourism), 38.

Orbán, N., Boldizsár, I., Szucs, Z. & Dános, B. (2008). Influence of Different Elici-tors on the Synthesis of Anthraquinone Derivatives in Rubia tinctorum L. Cell Suspension Cultures. Dyes and Pigments, 77(1), 249–257.

Osman, H. A., Taha, H. S., Youssef, M. M. A., El-Gindi, A. Y., Ameen, H. H. & Lashein, A. M. S. (2012). Establishment of Calli Cultures from Different Ex-plants of Tagetes erecta and T. Patula. Journal of Applied Sciences Research, 8(7), 3850–3854.

Purnamaningsih, R., & Ashrina, M. (2011). Pengaruh BAP dan NAA Terhadap In-duksi Kalus dan Kandungan Artemisin dari Artemisia annua L. 1 [The Effect of BAP and NAA on Callus Induction and Artemisinin Content of Artemisia annua L.]. Berita Biologi, 10(4), 481– 489.

Rafiq, M., Dahot, M. U., Mangrio, S. M., Naq-vi, H. A., Iqbal, A. & Qarshi, A. (2007). In vitro Clonal Propagation and Bio-chemical Analysis of Field Established Stevia rebaudiana Bertoni. Pakistan Journal of Botany, 39(7), 2467–2474.

Ravi, M., De, S. L., Azharuddin, S. & Paul S. F. D. (2010). The Beneficial Effects of Spirulina Focusing on its Immuno-modulatory and Antioxidant Properties. Nutrition and Dietary Supplements, 2, 73-83

Rivai, R. R., Husni, A. & Purwito, A. (2014). Induksi Kalus dan Embrio Somatik Tanaman Jambu Biji Merah (Psidium guajava L.). Buletin Agrohorti, 2(1), 49-58.

Sari. (2019). Induction and Growth of Endosperm Callus of Rimau Gerga Lebong (RGL) Citrus on Several Media Com-position. Akta Agrosia, 11(2), 56–62.

Sari, D. A., Slameto & Restanto, D. P. (2014). Induksi Tunas Kentang (Solanum tuberosum L.) menggunakan BAP (Benzil Amino Purine). Berkala Ilmiah Pertanian, x, 1–4.

Setyorini. (2018). Pengaruh Pemberian PEG (Polyethylen Glycol) 6000 (Foeniculum vulgare Mill.). Skripsi. Jurusan Biologi Fakultas Sains dan Teknologi Universitas Islam Negeri Maulana Malik Ibrahim Malang 2018.

Shah, M. R. & George, I. A. (2019). Increased Biomass and Pigment Production from Cassia alata L. Callus Cultures and their Potential as a Textile Dye. Indus-trial Crops and Products, 128, , 346– 353.

Sitinjak, M. A. Isda, M. N. & Fatonah, S. (2016). Induksi Kalus dari Eksplan Daun In Vitro Keladi Tikus (Typhonium sp.) dengan Perlakuan 2,4-D dan Kine-tin. Al-Kauniyah Jurnal Biologi, 8(1), 32–39.

Sugiyarto, L. & Kuswandi, P. (2014). Pen-garuh 2, 4-Diklorofenoksiasetat (2, 4-D) dan Benzyl Aminopurin (BAP) Terhadap Pertumbuhan Kalus Daun Binahong (Anredera). Jurnal Penelitian Saintek, 19(1), 23–30.

Wahyuni, A., Satria, B. & Zainal, A. (2020). Induksi Kalus Gaharu dengan NAA dan BAP Secara In Vitro. Agrosains: Jurnal Penelitian Agronomi, 22(1), 39-44.

Wulansari, A., Purwito, A., Husni, A. & Su-darmonowati, E. (2015). Kemamp-uan Regenerasi Kalus Embriogenik Asal Nuselus Jeruk Siam serta Variasi Fenotipe Tunas Regeneran. Prosiding Seminar Nasional Masyarakat Biodi-versitas Indonesia, 1(1), 97–104




DOI: https://doi.org/10.15575/biodjati.v5i2.5840

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Jurnal Biodjati



Indexing By :

      

      

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 

View My Stats