ESTIMASI INTERVAL KEPERCAYAAN (CONFIDENCE INTERVAL) PARAMETER MODEL PROSES GEOMETRIK WEIBULL PADA ANALISIS UJI HIDUP UNTUK DATA TERSENSOR TIPE II


Asep Solih(1*), Rini Cahyandari(2), Tarkinih Tarkinih(3)

(1) Program Studi Matematika UIN Sunan Gunung Djati Bandung, Indonesia
(2) Program Studi Matematika UIN Sunan Gunung Djati Bandung, Indonesia
(3) Program Studi Matematika UIN Sunan Gunung Djati Bandung, Indonesia
(*) Corresponding Author

Abstract


Tulisan ini bertujuan untuk menentukan prosedur estimasi interval kepercayaan
(confidence interval) parameter model proses geometrik pada analisis uji hidup (life testing) untuk data tersensor tipe II yang berdistribusi Weibull. Metoda
kemungkinan maksimum (maximum likelihood) digunakan dalam penaksiran
parameter, penyelesaian taksiran interval kepercayaan diselesaikan dengan metoda numerik Newton Raphson dan bootstrap percentile CI dengan selang kepercayaan 95%

Keywords


Proses Geometrik; Uji Hidup (life testing); Data Tersensor Tipe II; Distribusi Weibull; Bootstrap

Full Text:

PDF

References


Elsayed, E.A. Reliability

Engineering. Addison Wesley

Longman Inc Reading

Massachusetts. 1999

Huang, Shan. Statistical Inference

in Accelerated Life Testing

with Geometric Process

Model. Thesis. Faculty San

Diego State University, 2011.

J. Chen, Bayesian Computing For

Geometric Process in

Maintenance Problems,

Mathematics and Computers

In Simulation, vol.81, pp.771-

, 2010.

Kamal Mustafa, Shazia Zarrin, S.

Saxena, dan Arif-Ul-Islam.

Weibull Geometric Process

Model for the Analysis of

Accelerated Life Testing with

Complete Data. International

Journal of Statistics and

Application, 2(5) : 60-66,

Lam, Yeh., The Geometric

Process And Its Application.

World Scientific Publishing

Co. Pte. Ltd., Singapore, 2007.

Lawless, J.F. Statistical Models

and Method for Lifetime Data.

University of Waterloo, 1982.

Zhang, Y. L. A Geometrical

Process Repair Model for a

Repairable System with

Delayed Repair. Computers

and Mathematics with

Applications, vol. 55, pp.

-1643, 2008.