KADAR LIPIDA Scenedesmus sp PADA KONDISI MIKSOTROF DAN PENAMBAHAN SUMBER KARBON DARI HIDROLISAT PATI SINGKONG


Mohamad Agus Salim(1*)

(1) Fakultas Sains dan Teknologi UIN Sunan Gunung Djati Bandung, Indonesia
(*) Corresponding Author

Abstract


Currently microalgae received great attention since it can be used as a source of raw material for biofuel production that promises to be able to replace fossil fuels. Microalgae contain lipids that can be converted into biodiesel as a biofuel. The low content of lipids in microalgae cells is a barrier for producing biodiesel from microalgae cells on a large scale or commercial. Culture techniques microalgae Scenedesmus sp under mixotrophic conditions by providing a source of organic carbon in the form of cassava starch hydrolyzate ( CSH ) is expected to increase biomass and high lipid content. The purpose of this study was to determine the effect of CSH that can promote the growth and lipid content of microalgae Scenedesmus sp in culture with mixotrophic conditions. Experiment using a completely randomized design (CRD) with ten replications. Treatment consisted of four concentrations of CSH : 0 ( control ), 5, 10, and 15 gL-1. The results showed cell density and cell growth rate of Scenedesmus sp highest concentration achieved in the treatment of CSH 5 g.L-1, at 1.93 X 106 sel.ml-1 which occurred on day 9 and 0.43 sel.hari-1 respectively. While the highest biomass concentration achieved in CSH 5 gL-1 at 1.32 gL-1 and the highest lipid content achieved by treatment of CSH concentration of 10 gL-1 of 19.5 %. Sources of organic carbon in the form of CSH is able to increase the biomass and lipid content of cells cultured Scenedesmus sp under mixotrophic conditions.

Full Text:

PDF

References


Abubakar L U, Mutie A M, Kenya, E U, and Muhoho A. (2012) Characterization of algae oil (oilgae) and its potential as biofuel in Kenya, Journal of Applied Phytotechnology in Environmental Sanitation, 1 (4): 147-153.

Ana P. Abreu, Bruno Fernandes, Antonio A. Vicente, Jose Teixeira, Giuliano Dragone. 2012. Mixotrophic cultivation of Chlorella vulgaris using industrial dairy waste as organic carbon source. Bioresource Technology 118 : 61–66

Cerón García, M. C., A. Sánchez Mirón, J. M. Fernández Sevilla, E. Molina Grima, and F. García Camacho. 2005. Mixotrophic growth of the microalga Phaeodactylum tricornutum. Influence of different nitrogen and organic carbon sources on productivity and biomass composition. Process Biochem. 40: 297-305.

Cerón García, M. C., J. M. Fernández Sevilla, F. G. Acién Fernández, E. Molina Grima, and F. García Camacho. 2000. Mixotrophic growth of Phaeodactylum tricornutum on glycerol: Growth rate and fatty acid profile. J. Appl. Phycol. 12: 239-248.

Chen, Y.F. 2011. Production of Biodiesel from Algal Biomass: Current Perspectives and Future;Academic Press: Waltham, MA, USA, 2011; p. 399.

Chen Yang, Qiang Hua, Kazuyuki Shimizu. 2000. Energetics and carbon metabolism during growth of microalgal cells under photoautotrophic, mixotrophic and cyclic light-autotrophic/dark-heterotrophic conditions Biochemical Engineering Journal 6 : 87–102

Chen Yen-Hui and Terry H. Walker. 2011. Biomass and lipid production of heterotrophic microalgae Chlorella protothecoides by using biodiesel-derived crude glycerol, Biotechnol Lett.

Chrismadha, T. Panggabean, L, M. mardiati, Y. 2006. Pengaruh Konsentrasi Nitrogen dan Fosfor Terhadap Pertumbuhan, Kandungan Protein, Karbohidrat dan Fikosianin Pada Kultur Spirulina fusiformis. Berita Biologi. Bogor.

Chisti, Y. 2007. Biodiesel from Microalgae. Journal of Biotechnology Advances. Vol: 11, (25) :294-306.

Chisti, Y. 2008. Biodiesel from microalgae beats bioethanol. Trends Biotech., 26, 126–131.

Christenson, L., Sims, R. 2011. Production and harvesting of microalgae for wastewater treatment,biofuels, and bioproducts. Biotechnol. Adv. 2011, 29, 686–702.

Chojnacka K, Marquez-Rocha F-J (2004) Kinetic and stoichiometric relationships of the energy and carbon metabolism in the culture of microalgae. Biotechnology 3(1):21–34

Combres C, Laliberte G, Reyssac JS, de LaNoue J (1994) Effect of acetate on growth and ammonium uptake in the microalga Scenedesmus obliquus. Physiol Plant 91:729–734

Fernández Sevilla, J. M., M. C. Cerón García, A. Sánchez Mirón, E. H. Belarbi, F. García Camacho, and E. Molina Grima. 2004. Pilot plant-scale outdoor mixotrophic cultures of Phaeodactylum tricornutum using glycerol in vertical bubble column and airlift photobioreactors: Studies in fedbatch mode. Biotechnol. Prog. 20: 728-736.

Isnansetyo, A. dan Kurniastuty. 1995. Teknik Kultur Phytoplankton dan Zooplankton. Kanisius : Yogyakarta.

Lee, Y.-K., Ding, S.-Y., Hoe, C.-H., Low, C.-S., 1996. Mixotrophic growth of Chlorella sorokiniana in outdoor enclosed photobioreactor. J. Appl. Phycol. 8 (2), 163–169.

Liang YN, Sarkany N, Cui Y (2009) Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions.

Biotechnol Lett 31(7):1043– 1049. doi:10.1007/s10529-009-9975-7

Miao X L, and Wu Q Y. (2005) Biodiesel production from heterotrophic microalgal oil, Bioresour Technol, 97:841–846

Ngangkham M, Sachitra K R, Radha P, Anil K S, Dolly W D, Chandragiri S and Rachapudi B N P. 2012. Biochemical modulation of growth, lipid quality and productivity in mixotrophic cultures of Chlorella sorokiniana. Springer Plus.

Rahmayanti, D. 2010. Pemodelan dan Optimasi Hidrolisa Pati Menjadi Glukosa dengan Metode Artificial Neural Network Genetic Algorithm (ANN-GA). Skripsi. Semarang.

Richmond, A., dan Hu, Q. 2013.Handbook of Microalgal Culture: Applied Phycology and Biotechnology, Second Edition. Edited by C John Wiley & Sons, Ltd. Published by Blackwell Publishing Ltd.

Schenk P, Thomas-Hall S, Stephens E, Marx U, Mussgnug J, Posten C (2009) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bio Energy Res 1:20–43

Shah D. (2012) Effect of glucose supplementation on nigttime biomass loss and productivity of microalgae Chlorella, submitted in partial fulfillment of requirements for the degree. Masters of Science in Chemical Engineering at The Cleveland State University

Sharma K K, Schuhmann H and Schenk P M. (2012) High lipid induction in microalgae for biodiesel production. Energies, 5: 1532-1553;

Sheehan., Dunahay., Benemann, J., Roessler P. 1998. Biodiesel from Algae. The National Renewable Energy Laboratory, A national laboratory of the U.S. Department of Energy.

Shi, X.-M., Liu, H.-J., Zhang, X.-W., Chen, F., 1999. Production of biomass and lutein by Chlorella protothecoides at various glucose concentrations in heterotrophic cultures. Process Biochem. 34 (4), 341–347.

Wang H, Fu R, and Pei G. (2012) A study on lipid production of the mixotrophic microalgae Phaeodactylum tricornutum on various carbon sources, African Journal of Microbiology Research, 6(5) : 1041-1047.

Wang L, Min M, Li Y, Chen P, Chen Y, Liu Y, Wang Y, Ruan R. (2009) Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant, Appl Biochem Biotechnol, DOI 10.1007/s12010-009-8866-7

Xu H, Miao X L, and Wu Q Y.(2006) High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters, J. Biotechnol, 126:499–507

Zhang, X.W., Zhang, Y.M., Chen, F., 1999. Application of mathematical models to the determination optimal glucose concentration and light intensity for mixotrophic culture of Spirulina platensis. Process Biochem. 34, 477–481.