SINKRONISASI CHAOS SIRKUIT LORENZ SERTA APLIKASINYA DALAM SISTEM KEAMANAN KOMUNIKASI


Mada Sanjaya WS(1*), Siti Nurlaela(2)

(1) 1.Jurusan Fisika, Fakultas Sains dan Teknologi, Universitas Islam Negeri Sunan Gunung Djati, Bandung, INDONESIA 2.Jurusan Matematika, Fakultas Sains dan Teknologi, Universiti Malaysia Terengganu, Kuala Terengganu 21030, MALAYSIA, Indonesia
(2) Jurusan Fisika, Fakultas Sains dan Teknologi, Universitas Islam Negeri Sunan Gunung Djati, Bandung, INDONESIA, Indonesia
(*) Corresponding Author

Abstract


Lorenz circuit is an autonomos three-dimensional system and a simple nonlinear circuits that can generate chaotic dynamics including the presence of variations in phase diagrams and attractors. In this paper, has been built the circuit design and numerical simulation based on the basic circuit Lorenz. The result of numerical simulations and electronic circuits are used to show the accuracy of the theoretical design and implementation of the circuit are made. Matlab program and Multisim is used to simulate the numerical implementation of the Lorenz circuit and shows the presence of chaos. In this paper, we have developed an application of chaotic signal as a signal modulator that can be used for secure communication systems.

Full Text:

PDF

References


Alligood, K. T., Sauer, T. D., & Yorke, J. A., (1996), Chaos: An Introduction to Dynamical Sistems. Springer-Verlag, New York.

Aziz-Alaoui, M.A., (2006), Complex emergent properties and chaos (De) synchronization, Emergent Properties in Natural and Artificial Dynamical Systems. Heidelberg: Springer p129-147.

Cuomo, K. M., & Oppenheim, A. V., (1993), Circuit implementation of synchronized chaos with applications to communications. Physical Review Letters, vol. 71, no. 1, pp. 65–68.

Feng, J. C. & Tse, C. K., (2007), Reconstruction of Chaotic Signals with Applications to Chaos Based Communications, Tsinghua University Press dan World Scientific Publishing Co. Pte. Ltd.

Kapitaniak, T., (2000), Chaos for engineers. 2nd ed. Springer-Verlag, Berlin.

Lorenz, E. (1963), Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130.

Mada, S.W.S dkk., (2011), Numerical and Experimental Simulation Nonlinear Chaotic Attractor of Chua Circuit, J.Oto.Ktrl.Inst (J.Auto.Ctrl.Inst) Vol 3(1):1-16.

Pecora, L., & Carroll, T., (1990), Synchronization in Chaotic Sistems, Physical Review Letters, Vol. 64, pp. 821-823.

Pecora, L., & Carroll, T., (1991), Driving sistems With Chaotic Signals, Physical Review Letters, Vol. 44, pp. 2374-2383.

Pehlivan, I & Uyaroglu, Y., (2010), A new chaotic attractor from general Lorenz system family and its electronic experimental implementation. Turk J Elec Eng & Comp Sci, Vol.18, No.2,171-184.

Wu, C.W., (2002), Synchronization in coupled chaotic circuits and systems. World Scientific Series on Nonlinear Science, Series A - Vol.42., Singapore.

Xian, F.L, dkk., (2009). Nonlinear dynamics and circuit implementation for a new Lorenz-like attractor, Chaos Soliton & Fractal, 41:2360–2370.