DINAMIKA EPIDEMIK TUBERCULOSIS (TB) PADA MODEL SATU STRAIN

Asep Solih Awalluddin

Abstract


This paper explains mathematical model for dynamic of tuberculosis epidemic using one strain model, with supported theorems and lemmas. One strain model is elaborated in a condition of disease-free equilibrium and unique endemic equilibrium.

Full Text:

PDF

References


Brian M. Murphy, Benjamin H. Singer, Denise Kirschner (2002) On treatment of tuberculosis in heterogeneous pupulations, Journal of Theoretical Biology. www.elsevier.com/locate/jtbi. Science Direct YJTBI 3243:1-14. www.sciencedirect.com.

Carlos Castillo-Chavez, Baojon Song (2002) An Overview of Dynamical Models of Tuberculosis: 10-17.

Carlos Castillo-Chavez, Zhilan Feng (1997), To treat or not to treat: the case of tuberculosis, Springer-Verlag, J Mol Med 35:629-656.

Dinas Kesehatan Jakarta, Indonesia: www.infeksi.com, www.dikes.org

E. Jung, S. Lenhart, Z. Feng (2002) Optimal Control of Treatment in A Two-Strain Tuberculosis Model, Discrete and Continuous Dynamical System Series B Volume 2 No. 4: 473-482. http://AIMsciences.org.

F.G.Gantmacher (1960), The Theory of Matrices, Volume I, Chelsea Publishing Company, NY: 125-126.

F.G.Gantmacher (1964), The Theory of Matrices, Volume II, Chelsea Publishing Company, NY: 194-195, 220-221.

Jan Medlock (2002) Mathematical Modeling of Epidemics: 1-23.

O. Diekmann, J.A.P. Heesterbeek. Mathematical Epidemiology of Infectious Diseases; Model Building, Analysis and Interpretation, John Wiley & Son, Ltd.: 3-62, 177-220.

Press release WHO: www.who.org, www.whosea.org, www.who.int

Sally M. Blower, Julie L. Gerberding, (1998) Understanding, predicting and controlling the emergence of drug-resistant tuberculosis: a theoretical framework, Springer-Verlag, J Mol Med 76:624-636.

Tuen Wai Ng, Gabriel Turinici, Antoine Danchin (2003) A double epidemic model for SARS propagation, BMC Infectious Diseases, BioMed Central: 1-16. http://www.biomedcentral.com/1417-2334/3/19.

Z. Feng, M. Iannelli, F.A. Milner (2002) A Two-Strain Tuberculosis Model with Age of Infection, SIAM J. Appl. Math. Vol. 62, No. 5: 1634-1656.


slot https://bursaikan.kkp.go.id/obc/ https://riph.pertanian.go.id/liquid/ slot gacor https://riph.pertanian.go.id/bl/ judi bola https://sievo.kemdikbud.go.id/infy/ situs toto https://sievo.kemdikbud.go.id/jb/ https://www.assets.rpg.co.id/ https://www.linkandthink.org/ https://sievo.kemdikbud.go.id/relx/ Slot Gacor https://www.theyashotel.com/ https://elearning.itbwigalumajang.ac.id/ https://e-absensi.singkawangkota.go.id/ https://bapeten.go.id/upload/ https://sentraki.itbwigalumajang.ac.id/ https://lppm.itbwigalumajang.ac.id/ https://bkombandung.kemkes.go.id/ slot gacor hari ini https://sinovik.kemkes.go.id/assets/run/ https://pdcproductions.com/ https://kkp.umt.ac.id/ https://csirt.sulbarprov.go.id/uploads/ https://sievo.kemdikbud.go.id/ https://sievo.kemdikbud.go.id/thai/