Pengaruh peningkatan suhu pada fase pembentukan umbi tanaman kentang (Solanum tuberosum) cv. Granola


Carla Frieda Pantouw(1), Betalini Widhi Hapsari(2), Bernadetta Rina Hastilestari(3*)

(1) ,  
(2) ,  
(3) Research Center for Genetic Engineering, National Research and Innovation Center (BRIN), Indonesia
(*) Corresponding Author

Abstract


Kentang (Solanum tuberosum) merupakan salah satu bahan makanan yang penting di dunia. Budidaya komoditas ini umumnya berada di dataran tinggi dengan suhu yang rendah. Jumlah lahan pertanian di dataran tinggi semakin kecil disebabkan antara lain karena alih fungsi lahan. Penanaman kentang di dataran yang lebih rendah menjadi kendala karena adanya peningkatan suhu. Penelitian ini dirancang untuk mengetahui pengaruh ketinggian tempat dan perubahan suhu terhadap tanaman kentang pada fase pembentukan umbi. Tanaman kontrol ditanam pada ketinggian 2921 meter diatas permukaan laut (m dpl) dengan suhu siang/malam (190C/120C). Setelah fase pembentukan umbi, sebagian tanaman dipindah ke daerah dengan ketinggian 115 m dpl dengan suhu siang/malam (300C/240C). Perubahan ketinggian tempat dengan suhu yang berbeda mengakibatkan shade avoidance, perubahan akumulasi biomasa pada batang tanaman dan penurunan hasil panen. Hal ini disebabkan karena penurunan hasil fotosintesa, sukrosa, serta kadar klorofil yang disebabkan oleh faktor genetik dan metabolisme enzim. Oleh karena untuk mendukung permintaan komoditas kentang yang semakin meningkat, pemuliaan tanaman kentang tahan terhadap cekaman suhu diperlukan untuk memperluas area penanaman kentang di dataran menengah maupun dataran rendah.

ABSTRACT

Potato (Solanum tuberosum) is one of the important staple foods in the world. This plant is mostly cultivated in high-altitude regions with low temperatures. As the number of lands for potato cultivation is getting smaller due to land conversion. Potato cultivation in low-altitude regions with high temperatures yields low productivity. This study was designed to determine the effect of altitude and temperature changes on potato plants in the tuber formation phase. Control plants were planted in an area with an altitude of 2921 meters above sea level (m asl), with day/night temperatures (190C/120C). After the tuber formation phase, some plants were transferred to areas with an altitude of 115 m above sea level and day/night temperatures (300C/240C). Change in altitude with different temperatures resulted in shade avoidance, changes in the accumulation of biomass on plant stems, and yield reduction. This is due to decreasing sucrose content as photosynthesis assimilates, and chlorophyll content due to genetic factors and enzyme metabolism. Therefore, to support the increasing demand for potato commodities, breeding potato plants resistant to heat stress is needed to expand the potato planting area in middle or low altitudes.

 


Keywords


dataran tinggi, kentang, Solanum tuberosum, produktivitas

Full Text:

PDF

References


Abelenda, J.A. & Prat, S. (2013). Cytokinins: determinants of sink storage ability. Current Biology, 23(13), R561-R563. https://doi.org/10.1016/j.cub.2013.05.020

Aisoi, L. E. (2019). Analisis kandungan klorofil daun Jilat (Villebrune rubescens Bl.) pada tingkat perkembangan berbeda. SIMBIOSA, 8(1), 50-58. https://doi.org/10.33373/sim-bio.v8i1.1893

Bahaji, A., Li, J., Sánchez-López, Á.M., Baroja-Fernández, E., Muñoz, F.J., Ovecka, M., Almagro, G., Montero, M., Ezquer, I., Etxeberria, E. & Pozueta-Romero, J. (2014). Starch biosynthesis, its regulation and biotechnological approaches to improve crop yields. Biotechnology Advances, 32(1), 87-106. https://doi.org/10.1016/j.biotechadv.2013.06.006

Birch, P. R., Bryan, G., Fenton, B., Gilroy, E. M., Hein, I., Jones, J. T., Prashar, A., Taylor, M.A. & Toth, I. K. (2012). Crops that feed the world 8: potato: are the trends of increased global production sustainable? Food Security, 4(4), 477-508. https://doi.org/10.1007/s12571-012-0220-1

Condori, B., Hijmans, R. J., Ledent, J. F., & Quiroz, R. (2014). Managing potato biodiversity to cope with frost risk in the high Andes: A modeling perspective. PLoS ONE, 9(1). https://doi.org/10.1371/journal.pone.0081510

Driver, J. A., & Kuniyuki, A. H. (1984). In vitro propagation of Paradox walnut rootstock. HortScience, 19(4), 507-509

Dirjen Hortikultura (2018). Laporan Kinerja Dirjen Hortikultura TA 2017. Jakarta: Dirjen Hortikultura.

Fedyaeva, A. v., Stepanov, A. v., Lyubushkina, I. v., Pobezhimova, T. P., & Rikhvanov, E. G. (2014). Heat shock induces production of reactive oxygen species and increases inner mitochondrial membrane potential in winter wheat cells. Biochemistry (Moscow), 79(11). https://doi.org/10.1134/S0006297914110078

Furrer, A. N., Chegeni, M., & Ferruzzi, M. G. (2018). Impact of potato processing on nutrients, phytochemicals, and human health. Critical Reviews in Food Science and Nutrition, 58(1). https://doi.org/10.1080/10408398.2016.1139542

Hannapel, D. J., & Banerjee, A. K. (2017). Multiple mobile mRNA signals regulate tuber development in potato. In Plants (Vol. 6, Issue 1). https://doi.org/10.3390/plants6010008

Hancock, R.D., Morris, W.L., Ducreux, L.J., Morris, J.A., Usman, M., Verrall, S.R., Fuller, J., Simpson, C.G., Zhang, R., Hedley, P.E. & Taylor, M.A. (2014). Physiological, biochemical, and molecular responses of the potato (Solanum tuberosum L.) plant to moderately elevated temperature. Plant, Cell & Environment, 37(2), 439-450.

Hardigan, M.A., Laimbeer, F.P.E., Newton, L., Crisovan, E., Hamilton, J.P., Vaillancourt, B., Wiegert-Rininger, K., Wood, J.C., Douches, D.S., Farré, E.M. & Veilleux, R.E. (2017). Genome diversity of tuber-bearing Solanum uncovers complex evolutionary history and targets of domestication in the cultivated potato. Proceedings of the National Academy of Sciences, 114(46), E9999-E10008. https://doi.org/10.1073/pnas.1714380114

Hastilestari, B.R. (2021). Analysis of potential genes for the development of potatoes (Solanum tuberosum) with heat stress tolerance. Nusantara Science and Technology Proceedings, 8-14. https://doi.org/10.11594/nstp.2021.1102

Hastilestari, B. R. (2019). Molecular analysis of potato (Solanum tuberosum) responses to increased temperatures (Doctoral dissertation, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)).

Hastilestari, B.R., Lorenz, J., Reid, S., Hofmann, J., Pscheidt, D., Sonnewald, U. & Sonnewald, S. (2018). Deciphering source and sink responses of potato plants (Solanum tuberosum L.) to elevated temperatures. Plant, cell & environment, 41(11), 2600-2616. https://doi.org/10.1111/pce.13366

Heltoft, P., Wold, A. B., & Molteberg, E. L. (2017). Maturity indicators for prediction of potato (Solanum tuberosum L.) quality during storage. Postharvest Biology and Technology, 129, 97-106. https://doi.org/10.1016/j.postharvbio.2017.03.011

Jon, E. (2018). Pengaruh media tanam terhadap pertumbuhan setek mikro kentang varietas granola. Edubiotik: Jurnal Pendidikan, Biologi dan Terapan, 3(01), 26-33. https://doi.org/10.33503/ebio.v3i01.76

Jespersen, D., Zhang, J., & Huang, B. (2016). Chlorophyll loss associated with heat-induced senescence in bentgrass. Plant Science, 249. https://doi.org/10.1016/j.plantsci.2016.04.016

Karimi, V., Karami, E., & Keshavarz, M. (2018). Climate change and agriculture: Impacts and adaptive responses in Iran. Journal of Integrative Agriculture, 17(1), 1-15. https://doi.org/10.1016/S2095-3119(17)61794-5

Kloosterman, B., Abelenda, J. A., Gomez, M. D. M. C., Oortwijn, M., de Boer, J. M., Kowitwanich, K., ... & Bachem, C. W. (2013). Naturally occurring allele diversity allows potato cultivation in northern latitudes. Nature, 495(7440), 246-250. https://doi.org/10.1038/nature11912

Lehretz, G.G., Sonnewald, S., Hornyik, C., Corral, J.M. & Sonnewald, U. (2019). Post-transcriptional regulation of FLOWERING LOCUS T modulates heat-dependent source-sink development in potato. Current Biology, 29(10), pp.1614-1624. https://doi.org/10.1016/j.cub.2019.04.027

Li, W., Xiong, B., Wang, S., Deng, X., Yin, L. & Li, H. (2016). Regulation effects of water and nitrogen on the source-sink relationship in potato during the tuber bulking stage. PloS one, 11(1), p.e0146877. https://doi.org/10.1371/journal.pone.0146877

Ludewig, F. & Sonnewald, U. (2016). Demand for food as driver for plant sink development. Journal of plant physiology, 203, 110-115. https://doi.org/10.1016/j.jplph.2016.06.002

Ludewig, F., & Flügge, U. I. (2013). Role of metabolite transporters in source-sink carbon allocation. Frontiers in Plant Science, 4, 231. https://doi.org/10.3389/fpls.2013.00231

Mathur, S., Agrawal, D., & Jajoo, A. (2014). Photosynthesis: response to high temperature stress. Journal of Photochemistry and Photobiology B: Biology, 137, 116-126. https://doi.org/10.1016/j.jphotobiol.2014.01.010

Nower, A. A. (2014). In vitro propagation and synthetic seeds production: an efficient methods for Stevia rebaudiana Bertoni. Sugar Tech, 16(1), 100-108. https://doi.org/10.1007/s12355-013-0228-7

Obidiegwu, J.E., Bryan, G.J., Jones, H.G. & Prashar, A. (2015). Coping with drought: stress and adaptive responses in potato and perspectives for improvement. Frontiers in Plant Science, 6, 542. https://doi.org/10.3389/fpls.2015.00542

Ohama, N., Sato, H., Shinozaki, K. & Yamaguchi-Shinozaki, K. (2017). Transcriptional regulatory network of plant heat stress response. Trends in plant science, 22(1), 53-65. https://doi.org/10.1016/j.tplants.2016.08.015

Quint, M., Delker, C., Franklin, K.A., Wigge, P.A., Halliday, K.J. & van Zanten, M. (2016). Molecular and genetic control of plant thermomorphogenesis. Nature Plants, 2(1), 15190. https://doi.org/10.1038/nplants.2015.190

Ohama, N., Sato, H., Shinozaki, K. & Yamaguchi-Shinozaki, K. (2017). Transcriptional regulatory network of plant heat stress response. Trends in plant science, 22(1), 53-65. https://doi.org/10.1016/j.tplants.2016.08.015

Quint, M., Delker, C., Franklin, K.A., Wigge, P.A., Halliday, K.J. & van Zanten, M. 2016. Molecular and genetic control of plant thermomorphogenesis. Nature Plants, 2(1), p.15190.

Romero-Montepaone, S., Poodts, S., Fischbach, P., Sellaro, R., Zurbriggen, M. D., & Casal, J. J. (2020). Shade avoidance responses become more aggressive in warm environments. Plant Cell and Environment, 43(7). https://doi.org/10.1111/pce.13720

Roumeliotis, E., Kloosterman, B., Oortwijn, M., Visser, R.G.F. & Bachem, C.W.B. (2013). The PIN family of proteins in potato and their putative role in tuberization. Frontiers in plant science, 4, 524. https://doi.org/10.3389/fpls.2013.00524

Roumeliotis, E., Kloosterman, B., Oortwijn, M., Kohlen, W., Bouwmeester, H.J., Visser, R.G. & Bachem, C.W. (2012). The effects of auxin and strigolactones on tuber initiation and stolon architecture in potato. Journal of experimental botany, 63(12), 4539-4547. https://doi.org/10.1093/jxb/ers132

Rykaczewska, K. (2017). Impact of heat and drought stresses on size and quality of the potato yield. Plant, Soil and Environment, 63(1), 40-46. https://doi.org/10.17221/691/2016-PSE

Rykaczewska, K. (2013). The impact of high temperature during growing season on potato cultivars with different response to environmental stresses. American Journal of Plant Sciences, 4(12), 2386. https://doi.org/10.4236/ajps.2013.412295

Saidi, A., & Hajibarat, Z. (2021). Phytohormones: Plant switchers in developmental and growth stages in potato. Journal of Genetic Engineering and Biotechnology, 19(1), 1-17. https://doi.org/10.1186/s43141-021-00192-5

Sassi-Aydi, S., Aydi, S. & Abdelly, C. (2014). Inorganic nitrogen nutrition enhances osmotic stress tolerance in Phaseolus vulgaris: lessons from a drought-sensitive cultivar. HortScience, 49(5), pp.550-555. https://doi.org/10.21273/hortsci.49.5.550

Singh, B., Kukreja, S., & Goutam, U. (2019). Impact of heat stress on potato (Solanum tuberosum L.): present scenario and future opportunities. J. Hortic. Sci. Biotechnol. 0, 1–18. https://doi.org/10.1080/14620316.2019.1700173

Statistik, B.P. (2018). Statistik Tanaman Buah-buahan dan Sayuran Tahunan Indonesia. Badan Pusat Statistik. Jakarta.

Rudiyanto, Rantau, D.E., & Ermayanti, T.M. (2016). Pertumbuhan Kultur Tunas Kentang Merah (Solanum tuberosum) pada Media MS (Murashige & Skoog) dengan Perlakuan Konsentrasi dan Jenis Sitokinin. Dalam Seminar Nasional XXV “kimia dalam Industri dan Lingkungan”, Yogyakarta, 17 November 2016. ISSN: 0854-4778.

Purwito, A., Efendi, D., & Ermayanti, T. M. (2021, May). Growth response of four accessions of Moringa oleifera Linn shoots cultured on various basic media. In IOP Conference Series: Earth and Environmental Science (Vol. 741, No. 1, p. 012054). IOP Publishing.

Rykaczewska, K. (2017). Impact of heat and drought stresses on size and quality of the potato yield. Plant, Soil and Environment, 63(1), 40-46. https://doi.org/10.17221/691/2016-PSE

Rykaczewska, K. (2013). The impact of high temperature during growing season on potato cultivars with different response to environmental stresses. American Journal of Plant Sciences, 4(12), 2386. https://doi.org/10.4236/ajps.2013.412295

Sassi-Aydi, S., Aydi, S. & Abdelly, C. (2014). Inorganic nitrogen nutrition enhances osmotic stress tolerance in Phaseolus vulgaris: lessons from a drought-sensitive cultivar. HortScience, 49(5), pp.550-555. https://doi.org/10.21273/hortsci.49.5.550

Singh, B., Kukreja, S., & Goutam, U. (2019). Impact of heat stress on potato (Solanum tuberosum L.): present scenario and future opportunities. J. Hortic. Sci. Biotechnol. 0, 1–18. https://doi.org/10.1080/14620316.2019.1700173

Sonnewald, U. & Kossmann, J. (2013). Starches—from current models to genetic engineering. Plant biotechnology journal, 11(2), 223-232. https://doi.org/10.1111/pbi.12029

Sonnewald, S. & Sonnewald, U. (2014). Regulation of potato tuber sprouting. Planta, 239(1), 27-38. https://doi.org/10.1007/s00425-013-1968-z

Tiburcio, A.F., Altabella, T., Bitrián, M. & Alcázar, R. (2014). The roles of polyamines during the lifespan of plants: from development to stress. Planta, 240(1), 1-18. https://doi.org/10.1007/s00425-014-2055-9

Trapero-Mozos, A., Ducreux, L.J., Bita, C.E., Morris, W., Wiese, C., Morris, J.A., Paterson, C., Hedley, P.E., Hancock, R.D. & Taylor, M. (2018). A reversible light-and genotype-dependent acquired thermotolerance response protects the potato plant from damage due to excessive temperature. Planta, 247(6), 1377-1392. https://doi.org/10.1007/s00425-018-2874-1

Van Harsselaar, J.K., Lorenz, J., Senning, M., Sonnewald, U. & Sonnewald, S. (2017). Genome-wide analysis of starch metabolism genes in potato (Solanum tuberosum L.). BMC genomics, 18(1), 37. https://doi.org/10.1186/s12864-016-3381-z

Yamamoto, Y. (2016). Quality control of photosystem II: the mechanisms for avoidance and tolerance of light and heat stresses are closely linked to membrane fluidity of the thylakoids. Frontiers in Plant Science, 7, 1136. https://doi.org/10.3389/fpls.2016.01136

Zhang, B., Holmlund, M., Lorrain, S., Norberg, M., Bako, L., Fankhauser, C., & Nilsson, O. (2017). BLADE-ON-PETIOLE proteins act in an E3 ubiquitin ligase complex to regulate PHYTOCHROME INTERACTING FACTOR 4 abundance. Elife, 6, e26759. https://doi.org/10.7554/eLife.26759




DOI: https://doi.org/10.15575/18117

Refbacks

  • There are currently no refbacks.


Creative Commons Licence

Jurnal Agro (J. Agro: ISSN 2407-7933) by http://journal.uinsgd.ac.id/index.php/ja/index is licensed under a Creative Commons Attribution 4.0 International License.