Kemampuan Pseudomonas spp. Pendar fluor dan Bacillus spp. Dalam mengendalikan penyakit hawar pelepah jagung


Endang Mugiastuti(1*), Suprayogi Suprayogi(2), Nur Prihatiningsih(3), Loekas Soesanto(4)

(1) Fakultas Pertanian Universitas Jenderal Soedirman, Jalan Dr. Suparno, Karangwangkal Purwokerto, Indonesia
(2) Fakultas Pertanian Universitas Jenderal Soedirman, Jalan Dr. Suparno, Karangwangkal Purwokerto,  
(3) Fakultas Pertanian Universitas Jenderal Soedirman, Jalan Dr. Suparno, Karangwangkal Purwokerto,  
(4) Fakultas Pertanian Universitas Jenderal Soedirman, Jalan Dr. Suparno, Karangwangkal Purwokerto,  
(*) Corresponding Author

Abstract


Upaya meningkatkan produksi jagung di Indonesia seringkali mengalami beberapa kendala, di antaranya adanya infeksi Rhizoctonia solani Kühn, penyebab penyakit hawar pelepah daun. Pengendalian hayati menggunakan bakteri antagonis indigenous jagung diharapkan dapat mengendalikan penyakit hawar pelepah jagung. Penelitian bertujuan untuk mengetahui kemampuan bakteri antagonis Pseudomonas spp. pendar fluor dan Bacillus spp. dalam mengendalikan penyakit hawar pelepah dan memacu pertumbuhan tanaman pada tanaman jagung. Penelitian menggunakan Rancangan Acak Kelompok Lengkap dengan 8 perlakuan meliputi Pseudomonas spp. pendar fluor BB.R1, Pseudomonas spp. pendar fluor PPD.B5, Bacillus spp. BB.R3, Bacillus spp. BK.R5, Bacillus spp. BB.B4, Bacillus spp. BK.A1, serta fungisida (fluopikolid 6% + propineb 67%) dan kontrol. Variabel yang diamati meliputi masa inkubasi, intensitas penyakit, AUDPC, jumlah daun, tinggi tanaman, bobot tanaman segar dan kering, bobot akar segar dan kering, serta panjang akar. Hasil penelitian menunjukkan bakteri antagonis asal rizosfer dan endofit mampu menekan penyakit hawar pelepah jagung, dengan menurunkan intensitas penyakit sebesar 42,87-85,69% dan AUDPC 53,19-87,23%. Pseudomonas spp. pendar fluor BB.R1, Bacillus spp. BB.R3 serta Bacillus spp. BB.B4 mampu meningkatkan beberapa komponen pertumbuhan tanaman jagung antara 9,5-40,49%. Bakteri Pseudomonas spp. pendar fluor BB.R1, Bacillus spp. BB.R3 serta Bacillus spp. BB.B4 memiliki potensi untuk dimanfaatkan sebagai pengendali penyakit hawar pelepah jagung serta mampu meningkatkan pertumbuhan tanaman jagung.

 

ABSTRACT

The efforts to increase maize production in Indonesia experienced several constraints, including the infection of Rhizoctonia solani Kuhn, the cause of sheath blight disease. Biological control, with antagonistic bacteria from indigenous maize, can be used to control maize sheath blight disease. This study was aimed to determine the ability of fluorescent Pseudomonas and Bacillus spp. to control sheath blight and promote plant growth in maize. The study used a randomized complete block design with eight treatments, including the fluorescent Pseudomonas BB.R1, fluorescent Pseudomonas PPD.B5, Bacillus spp. BB.R3, Bacillus spp. BK. R5, Bacillus spp. BB.B4, Bacillus spp. BK.A1, fungicides (fluopicolide 6% + propineb 67%) and controls. Variables observed including incubation period, disease intensity, AUDPC, number of leaves, plant height, fresh and dry plant weight, fresh and dry root weight, and root length. The results showed that antagonist bacteria could suppress maize sheath blight by reducing disease intensity from 42.87 to 85.69% and AUDPC from 53.19 to 87.23%. Fluorescent Pseudomonas BB.R1, Bacillus spp. BB.R3, and Bacillus spp. BB.B4 increased several components of maize growth from 9.50 to 40.49 %. The fluorescent Pseudomonas spp. BB.R1, Bacillus spp. BB.R3 and Bacillus spp. BB.B4 potentially utilized to control sheath blight disease and promote plant growth in maize.


Keywords


Bacillus, Jagung, Pengendalian, Pseudomonas, R. solani.

Full Text:

PDF

References


Ahanger, R., Bhatand, H. A., & Dar, N. A. (2014). Biocontrol agents and their mechanism in plant disease management. Sciencia Acta Xaveriana An International Science Journal, 5(1), 47–58.

Ahemad, M., & Kibret, M. (2014). Mechanisms and applications of plant growth promoting rhizobacteria : Current perspective. Journal of King Saud University - Science, 26, 1–20. https://doi.org/10.1016/j.jksus.2013.05.001

Ahmadzadeh, M., & Tehrani, A. S. (2009). Evaluation of fluorescent pseudomonads for plant growth promotion, antifungal activity against Rhizoctonia solani on common bean, and biocontrol potential. Biological Control : Theory and Applications in Pest Management, 48(2), 101–107.

Ahmed, E., & Holmström, S. J. M. (2014). Siderophores in environmental research: Roles and applications. Microbial Biotechnology, 7(3), 196–208. https://doi.org/10.1111/1751-7915.12117

Ahuya, S. C., & Payak, M. M. (1983). A rating scale for banded leaf and sheath blight of maize. Indian Phytopathology Vol. 36 : 338 – 340., 36, 338–340.

Ajayi-Oyetunde, O. O., & Bradley, C. A. (2018). Rhizoctonia solani: taxonomy, population biology and management of rhizoctonia seedling disease of soybean. Plant Pathology, 67(1), 3–17. https://doi.org/10.1111/ppa.12733

Aktar, W., Sengupta, D., & Chowdhury, A. (2009). Impact of pesticides use in agriculture: Their benefits and hazards. Interdisciplinary Toxicology, 2(1), 1–12. https://doi.org/10.2478/v10102-009-0001-7

Anderson, L. M., Stockwell, V. O., & Loper, J. E. (2004). An extracellular protease of Pseudomonas fluorescens inactivates antibiotics of Pantoea agglomerans. Phytopathology, 94(11), 1228–1234. https://doi.org/10.1094/PHYTO.2004.94.11.1228

Arvan, R., & Aqil, M. (2020). Deskripsi Varietas Unggul Jagung, Sorgum dan Gandum. Balai Penelitian Tanaman Serealia Badan Penelitian dan Pengembangan Pertanian Kementerian Pertanian.

Badan Penelitian dan Pengembangan Pertanian. (2013). Deskripsi Varietas Unggul Jagung Edisi 2013. Pusat Penelitian dan Pengembangan Tanaman Pangan, Badan Penenlitian dan Pengembangan Pertanian, Kementerian Pertanian.

Burbank, L., Mohammadi, M., & Roper, M. C. (2015). Siderophore-Mediated Iron Acquisition Influences Motility and Is Required for Full Virulence of the Xylem-Dwelling Bacterial Phytopathogen Pantoea stewartii subsp . stewartii. Applied and Environmental Microbiology, 81(1), 139–148. https://doi.org/10.1128/AEM.02503-14

Cavaglieri, L., Orlando, J., Rodríguez, M. I., Chulze, S., & Etcheverry, M. (2005). Biocontrol of Bacillus subtilis against Fusarium verticillioides in vitro and at the maize root level. Research in Microbiology, 156(5–6), 748–754. https://doi.org/10.1016/j.resmic.2005.03.001

Cawoy, H., Bettiol, W., Fickers, P., & Ongena, M. (2011). Bacillus-Based Biological Control of Plant Diseases. In M. Stoytcheva (Ed.), Pesticides in the Modern World-Pesticides Use and Management (pp. 273–302). https://doi.org/10.5772/52807

Chaudhary, S., Sagar, S., Tomar, A., Sengar, R. S., & Kumar, M. (2016). Banded leaf and sheath blight: A menacing disease of maize (Zea mays L.) and its management. Journal of Applied and Natural Science, 8(3), 1720–1730. https://doi.org/10.31018/jans.v8i3.1030

Compant, Duffy, S. B., EA., B., Clement, C., & Nowak, J. (2005). Use of Plant Growth-Promotng Bacteria for Biocontrol of Plant Diseases: principles, Mechanisme of Acion, and Future Prospects. Applied and Enviromental Microbiology, 71(9), 4951-4959.

Farooq, U., & Bano, A. (2013). Screening of indigenous bacteria from rhizosphere of maize (Zea mays L.) for their plant growth promotion ability and antagonism against fungal and bacterial pathogens. Journal of Animal and Plant Sciences, 23(6), 1642–1652.

Flury, P., Vesga, P., Péchy-Tarr, M., Aellen, N., Dennert, F., Hofer, N., Kupferschmied, K. P., Kupferschmied, P., Metla, Z., Ma, Z., Siegfried, S., de Weert, S., Bloemberg, G., Höfte, M., Keel, C. J., & Maurhofer, M. (2017). Antimicrobial and insecticidal: Cyclic lipopeptides and hydrogen cyanide produced by plant-beneficial Pseudomonas strains CHA0, CMR12a, and PCL1391 contribute to insect killing. Frontiers in Microbiology, 8(FEB). https://doi.org/10.3389/fmicb.2017.00100

Ganeshan, G., & Manoj Kumar, A. (2005). Pseudomonas fluorescens , a potential bacterial antagonist to control plant diseases. Journal of Plant Interactions, 1(3), 123–134. https://doi.org/10.1080/17429140600907043

Gow, N. A. R., Latge, J., & Munro, C. A. (2017). The fungal cell wall : structure, biosynthesis , and function. Microbiol Spectrum, 5(3), 1–25. https://doi.org/10.1128/microbiolspec.FUNK-0035-2016

Gupta, G., Parihar, S. S., Ahirwar, N. K., Snehi, S. K., & Singh, V. (2015). Plant growth promoting rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. Journal of Microbial & Biochemical Technology, 7(2), 96–102. https://doi.org/10.4172/1948-5948.1000188

Hassan, S. E. (2017). Plant growth-promoting activities for bacterial and fungal endophytes isolated from medicinal plant of Teucrium polium L. Journal of Advanced Research, 8(6), 687–695. https://doi.org/10.1016/j.jare.2017.09.001

Heydari, A., & Pessarakli, M. (2010). A review on biological control of fungal plant pathogens using microbial antagonists. Journal of Biological Sciences, 10(4), 273–290. https://doi.org/10.3923/jbs.2010.273.290

Izhar, T., & Chakraborty, M. (2013). Genetic Analysis of banded leaf and sheath blight resistance ( Rhizoctonia solani ) in maize. Journal of Pharmacognosy and Phytochemistry 1(6), 1–5.

Jeger, M. J., & Viljanen-Rollinson, S. L. H. (2001). The use of the area under the disease-progress curve (AUDPC) to assess quantitative disease resistance in crop cultivars. Theoretical and Applied Genetics, 102(1), 32–40. https://doi.org/10.1007/s001220051615

Madhavi, G. B., Bhattiprolu, S. L., Bharathi, S., Reddy, V. C., & Ankaiah, R. (2011). Studies on the management of banded leaf and sheath blight disease of maize (Rhizoctonia solani f. sp. sasakii) using fluorescent Pseudomonads. In M. S. Reddy & Q. Wang (Eds.), Plant Growth-Promoting Rhizobacteria (PGPR) For Sustainable Agriculture (pp. 567–576). Proc. 2nd Asian PGPR Conference, Beijing P.R. China, pp 567-576.

Madhavi, G. B., Grace, G. A. D., & Suresh, M. (2021). Evaluation of fungicides against Rhizoctonia solani f . sp sasakii inciting banded leaf and sheath blight disease of maize in vitro. Journal of Pharmacognosy and Phytochemistry, 10(38), 247–251. https://doi.org/10.37273/chesci.cs205110021v

Meyer, M. C., Bueno, C. J., de Souza, N. L., & Yorinori, J. T. (2006). Effect of doses of fungicides and plant resistance activators on the control of Rhizoctonia foliar blight of soybean, and on Rhizoctonia solani AG1-IA in vitro development. Crop Protection, 25(8), 848–854. https://doi.org/10.1016/j.cropro.2005.11.008

Mishra, P., Mishra, J., Dwivedi, S. K., & Arora, N. (2020). Microbial Enzymes in Biocontrol of Phytopathogens. In P. Misra, S. K. Dwivedi, & N. K. Arora (Eds.), Microbial Enzymes: Roles and Applications in Industries, Microorganisms for Sustainability 11 (Issue April, pp. 259–285). Springer Nature Singapore Pte Ltd. https://doi.org/10.1007/978-981-15-1710-5

Mugiastuti, E. (2022). Pengendalian Penyakit Hawar Pelepah Jagung dengan Bakteri Rizosfer dan Endofit. Fakultas Pertanian Universitas Jenderal Soedirman Purwokerto.

Muis, A., Djaenuddin, N., & Nonci, N. (2015). Uji virulensi beberapa isolat bakteri antagonis putative Bacillus subtilis sebagai agens pengendali hayati penyakit tanaman jagung. Bul Pen Tan Serealia, 1(1), 8–15.

Olanrewaju, O. S., Glick, B. R., & Babalola, O. O. (2017). Mechanisms of action of plant growth promoting bacteria. World Journal of Microbiology and Biotechnology, 33(11), 1–16. https://doi.org/10.1007/s11274-017-2364-9

Oztekin, S., & Karbancioglu-Guler, F. (2021). Bioprospection of Metschnikowia sp. isolates as biocontrol agents against postharvest fungal decays on lemons with their potential modes of action. . Postharvest Biology and Technology, 181, 111634. https://doi.org/DOI: 10.1016/j.postharvbio2021.111634.

Pal, K. K., & Mc Spadden Gardener, B. (2006). Biological control of plant pathogens. The Plant Health Instructor, 1–25. https://doi.org/10.1094/PHI-A-2006-1117-02.Biological

Raaijmakers, J. M., & Weller, D. M. (1998). Natural plant protection by 2,4-diacetylphloroglucinol-producing Pseudomonas spp. in Take-all decline soils. Molecular Plant-Microbe Interactions, 11(2), 144–152. https://doi.org/10.1094/MPMI.1998.11.2.144

Rai, D., & Singh, S. K. (2018). Is Banded Leaf and Sheath Blight a Potential Threat to Maize Cultivation in Bihar? International Journal of Current Microbiology and Applied Sciences, 7(11), 671–683. https://doi.org/10.20546/ijcmas.2018.711.080

Rosenblueth, M., & Martínez-Romero, E. (2006). Bacterial endophytes and their interactions with hosts. Molecular Plant-Microbe Interactions, 19(8), 827–837. https://doi.org/10.1094/MPMI-19-0827

Saeed, Q., Xiukang, W., Haider, F. U., Kučerik, J., Mumtaz, M. Z., Holatko, J., Naseem, M., Kintl, A., Ejaz, M., Naveed, M., Brtnicky, M., & Mustafa, A. (2021). Rhizosphere bacteria in plant growth promotion, biocontrol, and bioremediation of contaminated sites: A comprehensive review of effects and mechanisms. International Journal of Molecular Sciences, 22(19). https://doi.org/10.3390/ijms221910529

Sagar, G., & Bhusal, K. (2019). Banded Leaf and Sheath Bight ( BLSB ) of Maize , Its Introduction , Losses and Management. Journal of Soil Science and Plant Physiology, 1(2).

Sharma, A., Diwevidi, V. D., Singh, S., Pawar, K. K., Jerman, M., Singh, L. B., Singh, S., & Srivastawa, D. (2013). Biological Control and its Important in Agriculture. International Journal of Biotechnology and Bioengineering Research, 4(3), 175–180. http://www.ripublication.com/

Sharma, B. C., Singh, R. P., & Singh, R. (2020). Efficacy of bioagents and fungicides against banded leaf and sheath blight of maize caused by Rhizoctonia solani f . sp . sasakii Kuhn. Journal of Pharmacognosy and Phytochemistry, 9(5), 2065–2071.

Sharma, R. C., Vasal, S. K., Gonzalez, F., Batsa, B. K., & Singh., N. N. (2002). Redressal of banded leaf and sheath blight of maize through breeding, chemical and biocontrol agents. In G. Srinivasan, P. H. Zaidi, B. M. Prasanna, F. Gonzalez, & K. Lesnick (Eds.), Proceedings of the 8th Asian Regional Maize Workshop: New Technologies for the New Millennium. (pp. 391–397). Bangkok, Thailand: August 5-8, 2002. Mexico, D.F.: CIMMYT.

Shindu, S. S., RAkshiya, Y. S., & Sahu, G. (2009). Biological control of soilborne plant pathogens with rhizosphere bacteria. Pest Technology, 3(1), 10–21.

Simko, I., & Piepho, H. P. (2012). The area under the disease progress stairs: calculation, advantage, and application. Phytopathology, 102(4), 381–389. https://doi.org/10.1094/PHYTO-07-11-0216

Singh, S. K., Patel, M. B., Thakker, B. N., Hooda, K. S., & Barad, A. K. (2019). Rhizoctonia solani f.sp. sasakii inciting banded leaf and sheath blight of maize and their management: an overview. International Journal of Current Microbiology and Applied Sciences, 8(07), 2858–2866. https://doi.org/10.20546/ijcmas.2019.807.356

Soesanto, L. (2000). Ecological and Biological Control of Verticillium dahliae. Wageningen University, Wageningen.

Soesanto, L. (2009). Pengendalian hayati patogen tanaman: peluang dan tantangan dalam menunjang ketahanan pangan berkelanjutan. Pidato Pengukuhan Jabatan Guru Besar Pada Fakultas Pertanian Universitas Jenderal Soedirman.

Soylu, S., Soylu, E. M., Kurt, S., & Ekici., O. K. (2005). Antagonistic potentials of rhizosphere-associated bacterial isolates against soilborne diseases of tomato and pepper caused by Sclerotinia sclerotiorum and Rhizoctonia solani. Pak. J. Biol. Sci. 8:43-48., 8, 43–48.

Veliz, E. A., Martínez-Hidalgo, P., & Hirsch, A. M. (2017). Chitinase-producing bacteria and their role in biocontrol. AIMS Microbiology, 3(3), 689–705. https://doi.org/10.3934/microbiol.2017.3.689

Weller, D. M. (2007). Pseudomonas Biocontrol Agents of Soilborne Pathogens: Looking Back Over 30 Years. Phytopathology, 97(2), 250–256. https://doi.org/10.1094/PHYTO-97-2-0250

Yasmin, S., Hafeez, F. Y., Mirza, M. S., Rasul, M., Arshad, H. M. I., Zubair, M., & Iqbal, M. (2017). Biocontrol of bacterial leaf blight of rice and profiling of secondary metabolites produced by rhizospheric Pseudomonas aeruginosa BRp3. Front Microbiol., 8, 1895. https://doi.org/10.3389/fmicb.2017.01895




DOI: https://doi.org/10.15575/18819

Refbacks

  • There are currently no refbacks.


Creative Commons Licence

Jurnal Agro (J. Agro: ISSN 2407-7933) by http://journal.uinsgd.ac.id/index.php/ja/index is licensed under a Creative Commons Attribution 4.0 International License.