Pemanfaatan Trichoderma harzianum dan biochar untuk mengatasi cekaman kekeringan pada kedelai fase reproduktif


Benang - Purwanto(1*), Indrawati - Indrawati(2), Sumadi Sumadi(3), Anne - Nuraini(4), Mieke Rochimi Setiawati(5)

(1) Politeknik Pembangunan Pertanian Manokwari, Indonesia
(2) Politeknik Pembangunan Pertanian Manokwari, Indonesia
(3) Universitas Padjadjaran, Indonesia
(4) Universitas Padjadjaran, Indonesia
(5) Universitas Padjadjaran, Indonesia
(*) Corresponding Author

Abstract


Pemanfaatan Trichoderma harzianum dan biochar sekam padi diharapkan mampu mengurangi dampak negatif cekaman kekeringan pada tanaman kedelai fase reproduktif. Tujuan penelitian ini untuk mengetahui interaksi aplikasi Trichoderma harzianum dan biochar sekam padi terhadap fisiologis dan hasil kedelai tercekam kekeringan selama fase reproduktif pembentukan polong (R3) sampai perkembangan biji (R6). Penelitian ini menggunakan rancangan split-split plot. Petak utama adalah cekaman air (75%, 50% dan 25% dari kapasitas lapang. Anak petak yaitu aplikasi Trichoderma harzianum (tanpa aplikasi Trichoderma harzianum dan dengan aplikasi Trichoderma harzianum dosis 50 g kg-1 benih kedelai), sedangkan anak-anak petak yaitu dosis biochar sekam padi (0, 5, dan 10 t ha-1). Hasil penelitian menunjukkan bahwa interaksi aplikasi Trichoderma harzianum 50 g kg-1 benih kedelai dan  biochar  sekam  padi dosis 10 t ha-1 secara fisiologis mampu meningkatkan kadar air relatif (KAR) daun, konduktansi stomata, sedangkan penurunan kadar prolin lebih dipengaruhi oleh adanya penambahan biochar dosis 5 dan 10 t ha-1.

ABSTRACT

The use of Trichoderma harzianum and rice husk biochar is expected to reduce the negative effects of drought stress on soybean plants in the reproductive phase. The purpose of this study was to determine the interaction of the application of Trichoderma harzianum and rice husk biochar on the physiology and yield of drought-stressed soybeans during the reproductive phase of pod formation (R3) to seed development (R6). This study uses a split-split plot design. The main plots were water stress (75%, 50%, and 25% of field capacity. The subplots were the application of Trichoderma harzianum (without the application of Trichoderma harzianum and the application of Trichoderma harzianum at a dose of 50 g kg-1 soybean seeds), while the subplots were rice husk biochar doses (0, 5, and 10 t ha-1). The results showed that the interaction of the application of Trichoderma harzianum 50 g kg-1 soybean seeds and rice husk biochar dose 10 t ha-1was physiologically able to increase the relative water content (RWC) leaves, stomatal conductance, while the decrease in proline levels was more influenced by the addition of biochar doses of 5 and 10 t ha-1.


Keywords


Biochar, cekaman kekeringan, fisiologis,Trichoderma harzianum

Full Text:

PDF

References


Abd El-Rahman, S.S., & Mohamed, H.I. (2014). Application of benzothiadiazole and Trichoderma harzianum to control faba bean chocolate spot disease and their effect on some physiological and biochemical traits. Acta Physiologia Plantarum. 36(2): 343-354. DOI: 10.1007/s11738-013-1416-5

Afshar, R.K., Hashemi, M, DaCosta, M, Spargo, J & Sadeghpour. (2016). Biochar application and drought stress effects on physiological characteristics of Silybum amrianum. Commun. Soil Sci. Plant Anal. 47: 743-752.

Ahmad, P., Hashem, A., Abd- Allah, E.F., Alqarawi, A.A., John, R., & Egamberdieva, D. et al. (2015). Role of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L) through antioxidative defense system. Front Plant Sci. 6: 868.

Ahmed, F., Arthur, E., Plauborg, F., & Andersen, M.N. (2016). Biochar effect on maize physiology and water capacity of sandy subsoil. Mechanization in Agriculture and Conserving of The Resources. 6: 03-10.

Alfiky, A., & Weisskopf, L. (2021). Deciphering Trichoderma–Plant–Pathogen Interactions for Better Development of Biocontrol Applications. Mycology Journal. 7(6): 61. DOI:10.3390/jof7010061.

Asai, H., Samson, B.K., Stephan, H.M., Songyikhangsuthor, K., Homma, K., Kiyono, Y., Inoue, Y., Shiraiwa, T., & Horie, T. (2009). Biochar amendment techniques for upland rice production in Northern Laos: 1. Soil physical properties, leaf SPAD, and grain yield. Field Crop Res. 111(1–2): 81–84. DOI:10.1016/j.fcr.2008.10.008.

Aslam, M.U., Raza, M.A.S., Saleem, M.F., Waqas, M., Iqbal, R., Ahmad, S., & Haider, I. (2020). Improving strategic growth stage-based drought tolerance in quinos by Rhizobaterial inoculation. Commun. Soil Sci. Plant Anal. 51: 853-868.

Begum, N., Muhammad, A.A., Yunyun, S., Yafang, L., Nabil, S.A.M., Parvaiz, A., & Lixin, Z. (2019). Improved Drought Tolerance by AMF Inoculation in Maize (Zea mays) Involves Physiological and Biochemical Implications. Plants. 8(12): 579. DOI: 10.3390/plants8120579.

Bengough A., McKenzie, B., Hallett, P., & Valentine, T. (2011). Root elongation, water stress, and mechanical impedance: a review of limiting stresses and beneficial root tip traits. J Exp Bot. 62(1):59–68.

Candogan, B.N., Sincik, M., Buyukcangaz, H., Demirtas, C., Goksoy, A.T., & Yazgan. S. (2013). Yield, quality and crop water stress index relationships for deficit-irrigated soybean (Glycine max L. Merr.) in sub-humid climatic conditions. Agricultural Water Management. 118: 113 – 121. DOI: 10.1016/j.agwat.2012.11.021.

El-Sharkawy, M., Ahmed H. El-Naggar, Arwa A.A.,& Adel, M. G. (2022). Acid-Modified Biochar Impacts on Soil Properties and Biochemical Characteristics of Crops Grown in Saline-Sodic Soils. Sustainability. 14:8190.

Fang, X., Turner, N., Yan, G., Li, F., & Siddique, K. (2010). Flower numbers, pod production, pollen viability, and pistil function are reduced and flower and pod abortion increased in chickpea (Cicer arietinum L.) under terminal drought. J Exp Bot. 61(2):335–345.

Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., & Basra, S.M.A. (2009). Plant drought stress: Effects, mechanisms, and management. Agronomy for Sustainable Development. 29: 185–212. DOI: 10.1051/agro:2008021.

Gomez, M., Pérez-Gallardo, R.V., Sánchez, L.A., Díaz-Pérez, A.L., Cortés-Rojo, C., Carmen, V.M., Saavedra-Molina, A., Lara-Romero, J., Jiménez-Sandoval, S., Rodríguez, F., Rodríguez-Zavala, J.S., & Campos-García, J. (2014). Malfunctioning of the iron–sulfur cluster Assembly Machinery in Saccharomyces cerevisiae produces oxidative stress via an iron-dependent mechanism, causing dysfunction in respiratory complexes. PloS ONE. 9(11):e111585.DOI:10.1371/journal.pone.0111585.

Graber, E.R., Frenkel, O., Jaiswal, A.K., & Y. Elad. (2014). How may biochar influence severity of diseases caused by soilborne pathogens. Carbon Manag. 5: 169-183.

Graber, E.R., Tsechansky, Lew, L. B., & Cohen , E. (2014). Reducing capacity of water extracts of biochars and their solubilization of soil Mn and Fe. European Journal of Soil Science. 65(1): 162-172. DOI: 10.1111/ejss.12071.

Gururani, M.A., Venkatesj J., & Lam-Son Phan T. (2015). Regulation of photosynthesis during abiotic stress-induced photoinhibition. Molecular Plant. 8(9): 1304-1320. DOI: 10.1016/j.molp.2015.05.005.

Hapsoh dan Purwoko, B.S. (2006). Respons fisiologi beberapa genotipe kedelai yang bersimbiosis dengan MVA terhadap berbagai tingkat cekaman kekeringan. Hayati. 13(2): 43-48.

Harman. (2012). Trichoderma for biocontrol of plant pathogens:

from basic research to commercialized products. Cornell University (Online). http://web.entomology.cornell.edu/shelton/cornell-biocontrol-conf/talks/harman.html (diakses pada 12 Oktober 2021).

Hasan, M., Ali, A., Soliman, M., Alqarawi, A.A., Abd_Allah, E.F. & Fang, X. (2020). Insights into 28-homobrassinolide (HBR)-mediated redox homeostasis, AsA–GSH cycle, and methylglyoxal detoxification in soybean under drought-induced oxidative stress. J Plant Inter. 15:371–385.

Harrison, M., Tardieu F., Dong, Z., Messina, C., & Hammer, G. (2014). Characterizing drought stress and trait influencing on maize yield under current and future conditions. Glob Chang Biol. 20(3):867–78.

He, J., Du, Y., Wang, T., Turner, N., Yang, R., Jin, Y., Xi, Y., Zhang, C., Cui, T., Fang, X., & Li, F. (2017). Conserved water use improves the yield performance of soybean (Glycine max (L.) Merr.) under drought. Agr Water Manage. 179:236–245.

Hermosa, R., Viterbo, A., Chet, I., & Monte, E. (2012). Plant-beneficial effects of Trichoderma and of its genes. Microbiology. 158(1): 17-25. DOI: 10.1099/mic.0.052274-0.

Hussain, M., Farooq, S., Hasan, W., Ul-Allah, S., Tanveer, M., Farooq, M., & Nawaz, A. (2018). Drought stress in sunflower: physiological effects and its management through breeding and agronomic alternatives. Agr Water Manage.201:152–166.

Iqbal, M.D. (2017). Utilization of biochar in improving yield of wheat in Bangladesh. Bulgarian Journal of Soil Science. 2: 53-74.

Jahan, S., Iqbal, S., Rasul, F., & Jabeen, K. (2020). Efficacy of biochar as soil amendments for soybean (Glycine max L.) morphology, physiology, and yield regulation under drought. Arabian Journal of Geosciences. 13 (10): 356. DOI: 10.1007/s12517-020-05318-6.

Kraska, P., Oleszczuk, P., Andruszczak, S., Kwiecińska-Poppe, E., Różyło, K., Pałys, E., Gierasimiuk, P., & Michałojć, Z. (2016). Effect of various biochar rates n winter rye yield and the concentration of available nutrients in he soil. Plant, Soil, and Environment. 62: 483–489. DOI: 10.17221/94/2016-PSE.

Kumari, S., Kumar, S., & Prakash, P. (2018). Exogenous application of cytokinin (6-BAP) ameliorates the adverse effect of combined drought and high-temperature stress in wheat seedling. Journal of Pharmacognosy and phytochemistry. 7: 1178-1180.

Kusvuran, S., & Dasgan, H.Y. (2017). Drought induced physiological and biochemical responses in Solanum lycopersicum genotypes differing to tolerance. Acta Scientiarum Polonorum Hortorum Cultus. 16 (6): 19–27.

Lehmann, J. & Joseph, S. (2009). Biochar for environmental management an introduction, in: Lehmann, J., S. Joseph (Eds). Biochar for Environmental Management. Science and Technology, London, Earthscan: 1-12.

Lobell, D., Roberts, M., Schlenker, W., Braun, N., Little, B., Rejesus, R., & Hammer, G. (2014). Greater sensitivity to drought accompanies maize yield increase in the U.S. Midwest. Nature.;344:516–9.

Lyu, S., Du, G., Liu, Z., Zhao, L., & Lyu, D. (2016). Effects of biochar on photosystem function and activities of protective enzymes in Pyrus ussuriensis Maxim. under drought stress. Acta Physiologiae Plantarum. 38(9): 220. DOI:10.1007/s11738-016-2236-1.

Manolikaki, I. & Diamadopoulos, E. (2019). Positive effects of biochar and biochar-compost on maize growth and nutrient availability in two agricultural soils. Communications in Soil Science and Plant Analysis. DOI: 10.1080/00103624.2019.1566468.

Mastouri, F., Bjorkman, T., & Harman, G.E. (2010). Seed treatment with Trichoderma harzianum alleviates biotic, abiotic, and physiological stresses in germinating seeds and seedlings. Phytopathology. 100(11): 1213-1221, DOI: 10.1094/PHYTO-03-10-0091.

Mathobo, R, Marais, D, & Steyn, J. (2017). The effect of drought stress on yield, leaf gaseous exchange, and chlorophyll fluorescence of dry beans (Phaseolus vulgaris L.) Agr Water Manage.180:118–125.

Mega, R., Abe, F., Kim, J., Tsuboi, Y., Tanaka, K., Kobayashi, H., Sakata, Y., Hanada, K., Tsujimoto, H., Kikuchi, J., Cutler, S., & Okamoto, M. (2019). Tuning water-use efficiency and drought tolerance in wheat using abscisic acid receptors. Nat Plants. 5:153–9.

Meyer, S., Bright, R. M., Fisher, D., Schulz, H. & Glaser, B. (2012). Albedo impact on the suitability of biochar systems to mitigate global warming Environ. Sci. Technol. 46 12726–34.

Mohamed, H.I., Elsherbiny, E., & Abdelham, M.(2016). Das physiologische und biochemische Ansprechen von Vicia Faba auf die Blattbehandlung mit Zink und Eisen. Gesunde Pflanzen. 68(4):201–212. DOI:10.1007/s10343-016-0378-0.

Muller, B., Pantin, F., Génard. M., Turc, O., Freixes, S., Piques, M., & Gibon, Y. (2011). Water deficits uncouple growth from photosynthesis, increase C content, and modify the relationships between C and growth in sink organs. Journal of Experimental Botany. 62(6): 1715-1729, DOI: 10.1093/jxb/erq438.

Muter, O., Levina, L.G., Makarenkova, G., Vecstaudza, D., Strikauska, S., Selga, T., Kasparinskis, R., Stelmahere, S., & Steiner, C. (2017). Effect of biochar and Trichoderma application on fungal diversity and growth of Zea mays in a sandy loam soil. Environmental and Experimental Biology. 15: 289–296, DOI: 10.22364/eeb.15.30.

Parvin, S., Uddin, S., Fitzgerald, G., Tausz-Posch, S., Armstrong, R., & Tausz, M. (2019). Free air CO2 enrichment (FACE) improves water use efficiency and moderates drought effect on N2 fixation of Pisum sativum L. Plant Soil.;436(1–2): 587–606.

Prince, S., Murphy, M., Mutava, R., Durnell, L., Valliyodan, B., Shannon, J., & Nguyen, H (2017). Root xylem plasticity to improve water use and yield in water-stressed soybean. J Exp Bot. 68(8):2027–2036.

Raboin, L., Razafimahafaly, A., Rabenjarisoa, M., Rabary, B., Dusserre, J., Becquer, T. (2016). Improving the fertility of tropical acid soils: liming versus biochar application? A long-term comparison in the highlands of Madagascar. Field Crop Res. 199:99–108.

Rao&Talk. (2001). Influence of mycorrhizal fungi on the growth of different tree species and their nutrient uptake in gypsum maine spoil in India. Appl. Soil Ecol. 17: 279-284.

Rouphael, Y., Carillo, P., Cristofano, F., Cardarelli, M., & Colla, G. (2017). Effects of vegetal- versus animal-derived protein hydrolysate on sweet basil morpho-physiological and metabolic traits. Scientia Horticulturae. 284: 110123. DOI: 10.1016/j.scienta.2021.110123.

Thies, J.E. & Rillig, M. (2009). Characteristics of biochar: biological properties. Dalam: Lehmann, J. dan S. Joseph (Eds.), Biochar for Environmental Management: Science and Technology, Earthscan, London: 85-105.

Wang, P., Yang, C., Chen, H., Song, C., Zhang, X., Wang, D. (2017). Transcriptomic basis for drought resistance in Brassica napus L. Sci Rep. 7:40532.

Yadav, S.K., Jyothi Lakshmi, N., Maheswari, M., Vanaja. M., & Venkateswarlu, B. (2005). Influence of water deficit at vegetative, Anthesis, and grain filling stages on water relation and grain yield in sorghum. Indian Journal of Plant Physiology. 10 (1): 20–24.

Yoshiba, Y., Kiyosue, T., Nakashima, K., Yamaguchi, K., Shinozaki, K. (1997). Regulation of levels of proline as an osmolyte in plants under water stress. Plant Cell Physiol. 38: 1095-1102.

Zhao, C., Liu, B., Piao, S., Wang, X., Lobell, D.B., Huang, Y., Huang, M., Yao, Y., Bassu, S., Ciais, P., Durand, J.L., Elliott, J., Ewert, F., Janssens, I.A., Li, T., Lin, E., Liu, Q., & Martre, P. (2017). Temperature increase reduces global yields of major crops in four independent estimates. Proceedings of the National Academy of Science of the USA. 114(35): 9326-9331. DOI: 10.1073/pnas.1701762114 201701762.

Zhang, Q., Kong, D., Singh, V., & Shi, P. (2017). Response of vegetation to different timescales drought across China: spatiotemporal patterns, causes, and implications. Glob Planet Chang. 152:1–11.

Zhang, X., C. Zhao, S. Yu, Z. Jiang, S. Liu, Y. Wu, dan Z. Huang. 2020. Rhizosphere microbial community structure is selected by habitat but not plant species in two tropical seagrass beds. Frontiers in Microbiology. 11 (161). DOI: 10.3389/fmicb.2020.00161.

Zhang, Y., J. Ding, H. Wang, L. Su, dan C. Zhao. 2020. Biochar in addition alleviate the negative effects of drought and salinity stress on soybean productivity and water use efficiency. BMC Plant Biology. 20(288). DOI: 10.1186/s12870-020-02493-2.

Zipper, S., Qiu, J., & Kucharik, C. (2016). Drought effects on US maize and soybean production: spatiotemporal patterns and historical changes. Environ Res Lett. 11(9):094021.




DOI: https://doi.org/10.15575/20684

Refbacks

  • There are currently no refbacks.


Creative Commons Licence

Jurnal Agro (J. Agro: ISSN 2407-7933) by http://journal.uinsgd.ac.id/index.php/ja/index is licensed under a Creative Commons Attribution 4.0 International License.