Respons tanaman kopi liberika bermikoriza di lahan gambut terhadap aplikasi pupuk anorganik


Elis Kartika(1*), Made Deviani Duaja(2), Gusniwati Gusniwati(3)

(1) Scopus ID : 57211920708, Universitas Jambi, Indonesia
(2) Scopus ID : 57214222371, Universitas Jambi, Indonesia
(3) Universitas Jambi, Indonesia
(*) Corresponding Author

Abstract


Aplikasi pupuk anorganik secara kontinyu dengan dosis tinggi berdampak negatif terhadap kerusakan tanah dan lingkungan lainnya.  Pemakaian pupuk hayati mikoriza merupakan salah satu upaya untuk mengatasi dampak negatif tersebut.  Penelitian yang bertujuan untuk mendapatkan dosis pupuk anorganik terbaik dalam meningkatkan pertumbuhan tanaman kopi liberika bermikoriza di lahan gambut, dilakukan menggunakan  Rancangan Acak Kelompok satu faktor  6 perlakuan, yaitu tanpa pupuk hayati mikoriza + pupuk anorganik 100%, pupuk hayati mikoriza + tanpa pupuk anorganik,  pupuk hayati mikoriza + 25% pupuk anorganik, pupuk hayati mikoriza + 50% pupuk anorganik, pupuk hayati mikoriza + 75% pupuK anorganik, serta pupuk hayati mikoriza + 100% pupuk anorganik dengan dosis rekomendasi yaitu 50 g Urea, 40 g SP-36, 40 g KCl dan 15 g Kisserit per tanaman. Isolat mikoriza yang digunakan berupa isolat gabungan Glomus sp-1a dan Glomus sp-3c sebanyak 10 g per tanaman.  Peubah yang diamati adalah pertambahan tinggi tanaman, pertambahan diameter batang, pertambahan jumlah daun dan pertambahan jumlah cabang serta kolonisasi mikoriza.  Hasil penelitian menunjukkan bahwa aplikasi pupuk hayati mikoriza 10 g per tanaman dan 50% pupuk anorganik merupakan kombinasi terbaik dalam meningkatkan pertumbuhan kopi liberika di lahan gambut.  Pupuk hayati mikoriza mampu menggantikan dan menghemat pemakaian pupuk anorganik sebesar 50%.   

ABSTRACT

Continuous application of inorganic fertilizers in high doses can harm the soil and causes other environmental damage. Using mycorrhizal biofertilizers is one of the efforts to overcome the adverse effects of these inorganic fertilizers. The study aimed to obtain the best dose of inorganic fertilizer in increasing the growth of mycorrhizal liberika coffee plants on peatlands and was designed in a randomized block experiment. The treatment was the application of mycorrhizal biofertilizers and inorganic fertilizers according to recommendations i.e: without mycorrhizal biofertilizers +100% inorganic fertilizers; mycorrhizal biofertilizers+ no inorganic fertilizers; mycorrhizal biofertilizer+25% inorganic fertilizer; mycorrhizal biofertilizer + 50% inorganic fertilizer; mycorrhizal biofertilizer + 75% inorganic fertilizer; mycorrhizal biofertilizer + 100% inorganic fertilizer (as recommended doses of 50 g Urea, 40 g SP-36, 40 g KCl and 15 g Kisserit per plant). The mycorrhizal isolates used were a combination of Glomus sp-1a and Glomus sp-3c of 10 g per plant. The variables observed were the increase in plant height, stem diameter, number of leaves, number of branches, and mycorrhizal colonization. The results showed that applying 10 g per plant of mycorrhizal biofertilizer and 50% of inorganic fertilizer was the best combination for increasing the growth of Liberica coffee in peatlands.  Mycorrhizal biofertilizers can replace and reduce the use of inorganic fertilizers by 50%.


Keywords


Glomus sp-1a, Glomus sp-3c, Isolat Mikoriza, Pupuk Hayati

Full Text:

PDF

References


Alawathugoda, C. J. & Dahanayake, N. (2015). Effects of mycorrhizae as a substitute for inorganic fertilizer on growth and yield of tomato (Lycopersicon esculentum L.) and soybean (Glycine max L), and soil microbial activity, Tropical Agricultural Research, and Extension, 16(4), 108. https://doi.org/ https://doi.org/ 10.4038/tare.v16i4.5285

Alban, R., Guerrero, R. & Toro, M. (2013). Interactions between a root knot nematode (Meloidogyne exigua) and arbuscular mycorrhizae in coffee plant development (Coffea arabica). American Journal of Plant Sciences, 04(07), 19–23. https://doi.org/ 10.4236/ajps.2013.47a2003

Araújo, F.H.V., Cruz, R.S., Porto, D.W.B., Machado, C.M.M. & França, A.C. (2020). Effects of mycorrhizal association and phosphate fertilization on the initial growth of coffee plants. Pesquisa Agropecuaria Tropical, 50, 1–7. https://doi.org/10.1590/1983-40632020v5058646

Bano, S. A. and Ashfaq, D. (2013.) Role of mycorrhiza to reduce heavy metal stress, Natural Science, 05(12), 16–20. https://doi.org/ 10.4236/ns.2013.512a003

Begum, N., Qin, C., Ahanger, M.A., Raza, S., Khan, M.I., Ashraf, M., Ahmed, N. & Zhang, L. (2019). Role of arbuscular mycorrhizal fungi in plant growth regulation: implications in abiotic stress tolerance. Frontiers in Plant Science, 10(September), 1–15. https://doi.org/ 10.3389/fpls.2019.01068

Basri, A.H.H. (2018). Kajian peranan mikoriza dalam bidang pertanian. Agrica Ekstensia, 12(2), 74-78

Blanco-Canqui, H. & Schlegel, A. J. (2013). Implications of inorganic fertilization of irrigated corn on soil properties: lessons learned after 50 years. Journal of Environmental Quality, 42(3), 861–871. https://doi.org/ 10.2134/jeq2012.0451

Damayanti, N. D., Rini, M. V. and Evizal, R. (2015). Respon pertumbuhan kelapa sawit bibit (Elaeis guineensis Jacq.) terhadap jenis fungi mikoriza arbuskula pada dua tingkat pemupukan NPK. Jurnal Penelitian Pertanian Terapan, 15(1), 33–40

Daras, U., I. Sobari, O. Trisilawati, dan J. Towaha. (2015). Pengaruh mikoriza dan pupuk NPKMg terhadap pertumbuhan dan produksi kopi arabika. Jurnal Tanaman Industri dan Penyegar, 2(2), 91–98

Dobo, B. (2022). Effect of arbuscular mycorrhizal fungi (AMF) and rhizobium inoculation on growth and yield of Glycine max L. Varieties. International Journal of Agronomy, 1–10. https://doi.org/10.1155/2022/9520091

Emamverdian, A., Ding, Y., Mokhberdoran, F. & Xie, Y. (2015). Heavy metal stress and some mechanisms of plant defense response. The Scientific World Journal : 1-19. https://doi.org/ 10.1155/2015/756120

Evelin, H., Devi, T. S., Gupta, S. & Kapoor, R. (2019). Mitigation of salinity stress in plants by arbuscular mycorrhizal symbiosis: current understanding and new challenges. Frontiers in Plant Science, 10. https://doi.org/ 10.3389/fpls.2019.00470

Ferry, Y. & Rusli. (2014). Pengaruh dosis mikoriza dan pemupukan NPK tehadap pertumbuhan dan produksi kopi robusta di bawah tegakan kelapa produktif. Jurnal Litri 20(1): 27-34

França. A.C. & de Freitas, A.F. (2016). Mycorrhizal fungi increase coffee plants competitiveness against Bidens pilosa interference. Pesq. Agropec. Trop. Goiânia, 46(2), 132-139. https://doi.org/10.1590/1983-40632016v4639485

Gardner, F. P., Pearce, R. B., & Mitchael. (1991). Fisiologi Tanaman Budidaya. Universitas Indonesia: Jakarta.

Gong, X. & Tian, D. Q. (2019). Study on the effect mechanism of arbuscular mycorrhiza on the absorption of heavy metal elements in soil by plant. IOP Conference Series: Earth and Environmental Science, 267(5). https://doi.org/10.1088/1755-1315/267/5/052064

Haque, S. I. & Matsubara, Y. (2018). Salinity tolerance and sodium localization in mycorrhizal strawberry plants. Communications in Soil Science and Plant Analysis, 49(22), 2782–2792. https://doi.org/ 10.1080/00103624.2018.1538376

Hermawan, H., Muin, A., & Wulandari, R.C. (2015). Kelimpahan Fungi Mikoriza Arbuskula (FMA) pada tegakan ekaliptus (Eucalyptus pellita) berdasarkan tingkat kedalaman di lahan gambut. Jurnal Hutan Lestari 3 (1): 124 – 132

Jaitieng, S., Sinma, K. , Rungcharoenthong, P. & Amkha, S. (2020). Arbuscular mycorrhiza fungi applications and rock phosphate fertilizers enhance available phosphorus in soil and promote plant immunity in robusta coffee. Soil Science and Plant Nutrition, 67(1), 97–101. https://doi.org/ 10.1080/00380768.2020.1848343

Jia, T., Wang, Y., Liang, X. & Guo, T. (2022). Effect of AM fungi inoculation on litter bacterial community characteristics under heavy metal stress. Microorganisms 10(2), 206. https://doi.org/10.3390/microorganisms10020206

Junior, P.P., Moreira, B.C., Soares da Silva, M.C., Veloso, T.G.R., Sturmer, S.L., Fernandes, R.B.A., Mendonca, E.S., & Kasuya, M.C.M. (2019). Agroecological coffee management increases arbuscular mycorrhizal fungi diversity. PLoS ONE, 14(1), 1–20. https://doi.org/ 10.1371/journal.pone.0209093

Kartika, E., Duaja, M.D., Gusniwati, & Wilia, W. (2017). Identifikasi fungi mikoriza arbuskular dari rizosfer tanaman kopi liberika Tungkal Jambi di Desa Bram Itam Kanan dan Bunga Tanjung, Tanjung Jabung Barat. Prosiding Seminar Nasional BKS PTN Wilayah Barat Bidang Pertanian (hal. 487–494), 20-21 Juli 2017, Bangka Belitung

Kartika, E. & Gusniwati. (2019). Tingkat keberhasilan sambungan dan pertumbuhan bibit kopi robusta (Coffea Robusta L.) hasil grafting pada pemberian berbagai jenis mikoriza dan ketinggian batang bawah. Biospecies, 12(2), 9–19. https://doi.org/ 10.22437/biospecies.v12i2.6185

Kartika, E., Gusniwati & Duaja, M.D. (2021). Respons bibit kopi liberika hasil sambung pucuk dengan kopi robusta pada berbagai panjang entres dan inokulasi mikoriza. Jurnal Agro, 8(2), 164-177. https://doi.org/10.15575/12747

Kartika, E., Lizawati, L. & Hamzah. (2018). Respons tanaman jarak pagar terhadap mikoriza indigenous dan pupuk P di lahan bekas tambang batu bara. Biospecies 11(1), 10–18

Kasryno, F. & H. Soeparno. (2012). Dryland agriculture as a solution to achieve future food independence (in Indonesian). In: Prospects of dryland agriculture to support food security. Jakarta: Indonesian Agency for Agricultural Research and Development. pp. 11-34

Kormanik, P.P., & Mc Graw, AC. (1982). Quantification of Vesicular Arbuscular Mycorrhizae in Plant roots. in Schenck, NC (ed.). Methods and Principles of Mycorrhizal research. American Phytopathological Society, St Paul Minnesota, USA. pp. 37-45

Liu, C.Y., Zhang, F., De-Jian Zhang, D.J., Srivastava, A.K., Qiang-Sheng Wu, Q.S. & Ying-Ning Zou, Y.N. 2018. Mycorrhiza stimulates root-hair growth and IAA synthesis and transport in trifoliate orange under drought stress. Scientific Reports, 8:1-9. https://doi.org/10.1038/s41598-018-20456-4

Marwani, E., Suryatmana, P., Kerana, I.W., Puspanikan, D.L., Setiawati, M.R, Manurung, R. (2013). Peran mikoriza vesikular arbuskular dalam penyerapan nutrien, pertumbuhan, dan kadar minyak jarak (Jatropha curcas L.). Bionatura-Jurnal Ilmu-ilmu Hayati dan Fisik, 1(15), 1-7.

Math, S., Arya, S., Sonawane, H., Patil, V. & Chaskar, M. (2019). Arbuscular mycorrhizal (Glomus fasciculatum) fungi as a plant immunity booster against fungal pathogen. Current Agriculture Research Journal, 7(1), 99–107. https://doi.org/10.12944/carj.7.1.12

Miransari, M., Abrishamchi, A., Khoshbakht, K. & Niknam, V. (2012). Plant hormones as signals in arbuscular mycorrhizal symbiosis. Critical Reviews in Biotechnology, https://doi.org/10.3109/07388551.2012.731684

Noor, M., Masganti & Agus, F. (2014). Pembentukan dan karakteristik gambut tropika indonesia. In F. Agus, M. Anda. A. Jamil & Masganti (Eds.). Lahan Gambut Indonesia : Pembentukan, Karakteristik, dan Potensi Mendukung Ketahanan Pangan (Edisi Revisi). pp. 7-32. IAARD Press. Badan Penelitian dan Pengembangan Pertanian, Kementerian Pertanian.

Plassard, C. & Dell, B. (2010). Phosphorus nutrition of mycorrhizal trees. Tree Physiology, 30(9), 1129–1139. https://doi.org/10.1093/treephys/tpq063

Prasasti, O.H., Purwani, K.I., & Nurhatika, S. (2013). Pengaruh mikoriza Glomus fasciculatum terhadap pertumbuhan vegetatif tanaman kacang tanah yang terinfeksi patogen Sclerotium rolfsii. Jurnal Sains dan Seni ITS, 2(2), E74-E78

Pulungan, A.S.S. (2018). Tinjauan ekologi fungi mikoriza arbuskula. Jurnal Biosains 4(1): 17-22. https://doi.org/10.24114/jbio.v4i1.9389

Putra, B., Warly, L., Evitayani & utama, B.P. (2022). The role of arbuscular mycorrhizal fungi in phytoremediation of heavy metals and their effect on the growth of Pennisetum purpureum cv. Mott on gold mine tailings in Muara Bungo, Jambi, Indonesia. Biodiversitas, 23(1), 478–485. https://doi.org/ 10.13057/biodiv/d230151

Rojas, Y.C.P. del C. Arias, R.M., Ortis, R.M., Aguilar, D.T., Heredia, G. & Yon, Y.R. (2019). Effects of native arbuscular mycorrhizal and phosphate-solubilizing fungi on coffee plants. Agroforestry Systems, 93(3), 961–972. https://doi.org/ 10.1007/s10457-018-0190-1

Sasli, I. (2013). Respon tanaman kedelai terhadap pupuk hayati mikoriza arbuskula hasil rekayasa spesifik gambut. Jurnal Agrovigor, 6(1), 73–80

Sasli, I. & Ruliansyah. A. (2012). Pemanfaatan mikoriza arbuskula spesifik lokasi untuk efisiensi pemupukan pada tanaman jagung di lahan gambut tropis. Agrovigor, 5(2), 65–74

Sastrahidayat, I. R. (2011). Rekayasa Pupuk Hayati Mikoriza Dalam Meningkatkan Produksi Pertanian. Universitas Brawijaya Press, Malang.

Simanungkalit, R. D. M. (2001). Aplikasi pupuk hayati dan pupuk kimia: suatu pendekatan terpadu. Bul. Agrobio. 4(2):56-61

Smith, S. E. & Smith, F. A. (2012). Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth. Mycologia, 104(1), 1–13. https://doi.org/ 10.3852/11-229

Taffouo, V. D. Ngwene, B., Akoa, A. & Franken, P. (2014). Influence of phosphorus application and arbuscular mycorrhizal inoculation on growth, foliar nitrogen mobilization, and phosphorus partitioning in cowpea plants. Mycorrhiza, 24(5), 361–368. https://doi.org/ 10.1007/s00572-013-0544-5

Tawaraya, K. (2022). Response of mycorrhizal symbiosis to phosphorus and its application for sustainable crop production and remediation of environment. Soil Science and Plant Nutrition, 1–5. https://doi.org/ 10.1080/00380768.2022.2032335

Trejo, D., Sangabriel-Conde, W., Gavito-Pardo, M.E., & Banuelos, J. (2021). Mycorrhizal inoculation and chemical fertilizer interactions in pineapple under field conditions. Agriculture (Switzerland), 11(10), 1–8. https://doi.org/10.3390/agriculture11100934

Trisilawati, O., Towaha, J. & Daras, U. (2012). Pengaruh mikoriza dan pupuk NPK terhadap pertumbuhan dan produksi jambu mete muda. Buletin RISTRI, 3(1) : 91-98

Verbruggen, E., van der Heijden, M. G. A., Rillig, M. C., & Kiers, E. T. (2013). Mycorrhizal fungal establishment in agricultural soils: Factors determining inoculation success. New Phytologist, 197: 1104–1109

Wang, Y., Zhang, W., Liu, W., Ahammed, G.J., Wen, W., Guo, S., Shu, S. & Jin Sun J. (2021). Auxin is involved in arbuscular mycorrhizal fungi-promoted tomato growth and NADP malic enzymes expression in continuous cropping substrates. BMC Plant Biology 21:48. https://doi.org/10.1186/s12870-020-02817-2

Wulandari, D., Saridi, Cheng, W. & Tawaraya, K. (2016). Arbuscular Mycorrhizal Fungal inoculation improves Albizia saman and Paraserianthes falcataria growth in postopencast coal mine field in East Kalimantan, Indonesia. Forest Ecology and Management, 376: 67–73.

Zhang, F. Wang, P., Zou, Y.N., Wu, Q.S., & Kuča, K. (2018). Effects of mycorrhizal fungi on root-hair growth and hormone levels of taproot and lateral roots in trifoliate orange under drought stress. Archives of Agronomy and Soil Science s, Archives of Agronomy and Soil Science, https://doi.org/10.1080/03650340.2018.1563780




DOI: https://doi.org/10.15575/21421

Refbacks

  • There are currently no refbacks.


Creative Commons Licence

Jurnal Agro (J. Agro: ISSN 2407-7933) by http://journal.uinsgd.ac.id/index.php/ja/index is licensed under a Creative Commons Attribution 4.0 International License.