Pengaruh aplikasi zinc pada jagung terhadap pertumbuhan, produksi, mutu benih, dan kandungan zinc dalam benih


Agustiansyah Agustiansyah(1*), Paul B Timotiwu(2), M Syamsoel Hadi(3), Devi Maharani(4), Galuh M Pramudya(5)

(1) Jurusan Agronomi dan Hortikultura, Fakultas Pertanian, Universitas Lampung, Indonesia
(2) Jurusan Agroteknologi, Fakultas Pertanian, Universitas Lampung, Indonesia
(3) Jurusan Agronomi dan Hortikultura, Fakultas Pertanian, Universitas Lampung, Indonesia
(4) Jurusan Agronomi dan Hortikultura, Fakultas Pertanian, Universitas Lampung, Indonesia
(5) Jurusan Agronomi dan Hortikultura, Fakultas Pertanian, Universitas Lampung, Indonesia
(*) Corresponding Author

Abstract


Functional food corn has the potential to be developed because it has complete nutritional content. However, the nutritional value needs to be increased. One of the nutrients that needs to be improved because it is needed for plant growth and human nutritional needs is zinc. Agronomic biofortification techniques using priming and spraying leaves are believed can increase growth, production, seed quality and nutritional content in corn seeds. The aim of this research was to determine the effect of Zinc application on growth, production, seed quality and Zinc concentration levels in corn seeds. The research was arranged in a Randomized Block Design and was repeated three times and there were five treatments in this study, namely (1) control; (2) Zinc priming 0.5%; (3) Zinc priming 0.5% + spraying 0.5% Zinc 30 Days After Planting (DAP); (4) Zinc priming 0.5% + spraying 0.5% Zinc 45 DAP; (5) Zinc priming 0.5% + spraying 0.5% Zinc 50 DAP. The research results showed that the combination of seed priming and Zinc spraying had a significant effect on the variables of chlorophyll content, chlorophyll index, plant dry weight, and the number of seeds per cob of Srikandi Ungu corn variety. Zinc biofortification treatment through Zinc priming 0.5% + 0.5% Zinc spraying 50 DAP is the best treatment in increasing growth, production, seed quality and zinc content in Srikandi Ungu cord seeds compared to other treatments.


Jagung pangan fungsional berpotensi untuk dikembangkan karena memiliki kandungan nutrisi yang lengkap. Namun nilai kandungan nutrisinya perlu ditingkatkan. Salah satu nutrisi yang perlu ditingkatkan kandungannya karena sangat dibutuhkan bagi pertumbuhan tanaman maupun kebutuhan nutrisi manusia adalah Zinc . Teknik biofortifikasi agronomi dengan priming dan penyemprotan daun diyakini dapat meningkatkan pertumbuhan, produksi, hingga mutu benih dan kandungan nutrisi pada benih jagung. Tujuan penelitian ini untuk mengetahui pengaruh aplikasi Zinc terhadap pertumbuhan, produksi, mutu benih, dan kadar konsentrasi Zinc dalam benih jagung. Penelitian disusun dalam Rancangan Acak Kelompok dan diulang sebanyak tiga kali. Terdapat lima perlakuan pada penelitian ini, yaitu (1) kontrol; (2) priming Zinc 0,5%; (3) priming Zinc 0,5% + penyemprotan 0,5% Zinc 30 Hari Setelah Tanam (HST); (4) priming Zinc 0,5% + penyemprotan 0,5% Zinc 45 HST; (5) priming Zinc 0,5% + penyemprotan 0,5% Zinc 50 HST. Hasil penelitian menunjukkan kombinasi priming benih serta penyemprotan Zinc berpengaruh nyata terhadap variabel kandungan klorofil, indeks klorofil, bobot kering tanaman, dan jumlah biji per tongkol jagung varietas Srikandi Ungu. Perlakuan biofortifikasi Zinc melalui priming Zinc 0,5% + penyemprotan 0.5% Zinc pada 50 HST merupakan perlakuan terbaik dalam meningkatkan pertumbuhan, produksi, mutu benih, dan kadar zinc pada benih jagung varietas Srikandi Ungu dibandingkan dengan perlakuan lainnya.

Keywords


Biofortification; corn; nutripriming; seed; zinc

Full Text:

PDF

References


Alloway, B. (2004). Zinc in soils and crop nutrition. Areas of the World with Zinc Deficiency Problems.

Anwar, A., Yu, X., & Li, Y. (2020). Seed priming as a promising technique to improve growth, chlorophyll, photosynthesis and nutrient content in cucumber seedlings. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(1), 116–127.

Basit, A., Hussain, S., Abid, M., Zafar-Ul-Hye, M., & Ahmed, N. (2021). Zinc and potassium priming of maize (Zea mays L.) seeds for salt-affected soils. Journal of Plant Nutrition, 1–11.

Burnell, J. N. (1990). Immunological study of carbonic anhydrase in C3 and C4 plants using antibodies to maize cytosolic and spinach chloroplastic carbonic anhydrase. Plant Cell Physiol, 31, 423–427.

Cakmak, I. (2000). Role of zinc in protecting plant cells from reactive oxygen species. New Phytologist, 146(2), 185–205.

Cakmak, I. (2008). Enrichment of cereal grains with zinc: Agronomic or genetic biofortification. Plant and Soil, 302(1–2), 1–17.

Cakmak, I., & Kutman, U. B. (2018). Agronomic biofortification of cereals with zinc: a review. European Journal of Soil Science, 69, 172–180.

Cheah, Z. X., Harper, S. M., O’Hare, T. J., Kopittke, P. M., & Bell, M. J. (2022). Improved agonomic biofortification of sweetcorn achived using foliar rather than soil zinc applications. Cereal Cemistry, 99(4), 819–829.

Choukri, M., Abouabdillah, A., Bouabid, R., Abd-Elkader, O. H., Pacioglu, O., Boufahja, F., & Bourioug, M. (2022). Zinc application through seed priming improves productivity and gain nutritional quality of silage corn. Saudi Journal of Biological Sciences, 29(12).

Ghazian, M. I., & Candra, A. (2016). Pengaruh Suplementasi Seng dan Zat Besi Terhadap Tinggi Badan Balita Usia 3-5 Tahun di Kota Semarang. Journal of Nutrition College, 5(4), 491–499.

Ghimire, B., Timisa, D., & Nepal, J. (2015). Analysis of chlorophyll content and its correlation with yield attributing trait on early varieties of maize (Zea mays L.). Journal of Maize Research and Development, 1(1), 134–145.

Guzman-Ortiz, F. A., Castro-Rosas, J., Gomez-Aldapa, C. A., Mora-Escobedo, R., Rojas-Leon, A., Rodriguez-Marin, M. L., Falfan-Cortez, R. N., & Roman-Gutierrez, A. D. (2018). Enzyme activity during germination of different cereal: a review. Food Review International, 1–24.

Hartoyo, B. (2022). Perbaikan mutu gizi bahan pangan melalui biofortifikasi kandungan mineral. Jurnal Agrifoodtech, 1(1), 12–20.

Hassan, M. U., Chattha, M. U., Ullah, A., Khan, I., Qadeer, A., Aamer, M., Khan, A. U., Nadeem, F. F., & Khan, T. A. (2019). Agronomic biofortification to improve productivity and grain Zn concentration of bread wheat. International Jorunal of Agriculture and Biology, 21(3), 615–620.

Imran, M., Garbe-Schonberg, D., Neumann, G., Boelt, B., & Muhling, K. H. (2017). Zinc distribution and localization in primed maize seeds and its translocation during early seedling development. Environmental and Experimental Botany, 143, 91–98.

Itroutwar, P. D., Kasivelu, G., Raguraman, V., Malaichamy, K., & Sevathapandian, S. K. (2020). Effects of biogenic zinc oxide nanoparticles on seed germination and seedling vigor of maize (Zea mays). Biocatalysis and Agricultural Biotechnology, 29, 1–5.

Kafle, A., Khatri, D., Yadav, P. K., Regmi, R., & Koirala, B. (2022). Effect of zinc and boron on growth and yield of maize (Zea mays L.) in Pyuthan, Nepal. Plant Physiology and Soil Chemistry, 2(1), 29–36.

Kumar, D., Patel, K. C., Ramani, V. P., Shukla, A. K., Behera, S. K., & Patel, R. A. (2022). Influence of different rates and frequencies of zn application to maize-wheat cropping on crop productivity and zn use efficiency. Sustainability, 14,1–14.

Ladumor, R. G., Gudadhe, N. N., Onte, S., Narwade, A. V, Kamakar, N., & Thanki, J. D. (2019). Evaluation of maize for different methods and level of zinc application. Maydica, 64(3), 1–14.

Li, Y., Song, H., Zhou, L., Xu, Z., & Zhou, G. (2019). Vertical distributions of chlorophyll and nitrogen and their associations with photosynthesis under drouht and rewatering regimes in maize field. Agricultural and Forest Meteorology, 40–54.

Lutts, S., Benincasa, P., Wojtyla, L., Kubala, S., Pace, R., Lechowska, K., Quinet, M., & Garnczarska, M. (2016). Seed Priming: New Comprehensive Approaches for an Old Empirical Technique. New Challenges in Seed Biology - Basic and Translational Research Driving Seed Technology, 1–46. https://doi.org/10.5772/64420

Mohsin, A. U., Ahmad, A. U. H., Farooq, M., & Ullah, S. (2014). Influence of Zinc application through seed treatment and foliar spray on gowth, productivity and gain quality of hybrid maize. Journal of Animal and Plant Sciences, 24(5), 1494–1503.

Nciizah, A. D., Rapetosa, M. C., Wakindiki, I. C., & Zerizghy, M. G. (2020). Micronutrient seed priming improves maize (Zea mays) seeds for salt-affected soils. Journal of Plant Nutrition, 44, 130–141.

Ortiz-Monasterio, J., Roas, N. P., Meng, E., Pixley, K. R. T., & Pena, R. J. (2007). Enchaning the mineral and vitamin content of wheat and maize through plant breeding. Journal of Cereal Science, 46(3), 293–307.

Ramzan, Y., Hafeez, M. B., Khan, S., Nadeem, M., Rahman, S., Batool, S., & Ahmad, J. (2020). Biofortification with zinc and iron improves the grain quality and yield of wheat crop. International Journal of Plant Production.

Rehman, A., Farooq, M., Ahmad, R., & Basra, S. M. A. (2015). Seed priming with zinc improves the germination and early seedling growth of wheat. Seed Science and Technology, 43(2), 262–268.

Samreen, T., Humaira, Shah, H. U., Ullah, S., & Javid, M. (2013). Zinc effect on growth rate, chlorophyll, protein, and mineral contents of hydroponically grown mungbeans plants (Vigna radiata). Arabian Journal of Chemistry. https://doi.org/10.1016/j.arabjc.2013.07.005

Siddiqui, M. H., Oad, F. C., Abbasi, M. K., & Gandahi, A. W. (2009). Zinc and boron fertility to optimize physiological parameters, nutrient uptake and seed yield of sunflower. Sarhad J. Agric, 25(1), 53–57.

Singh, H., Singh, V., Singh, S., & Khanna, R. (2020). Response of maize (Zea mays) to foliar application of zinc and boron. Indian Journal of Agronomy, 65(4), 489–492.

Srivastav, A., Ganjewala, D., Singhal, R. K., Rajput, V. D., Minkina, T., Voloshina, M., Srivastava, S., & Srivastava, M. (2021). Effect of ZnO nanoparticles on growth and biochemical responses of wheat and maize. Plants, 10, 2556.

Stepic, V., Cvijanovic, G., Duric, N., Bajagic, M., Marinkovic, J., & Cvijanovic, V. (2022). Influence of zinc treatments on grain yield and grain quality of different maize genotypes. Plant, Soil and Environment, 68(5), 223–230.

Suarni, & Singgih, S. (2002). Karakteristik sifat fisik dan komposisi kimia beberapa varietas/galur biji sorgum. J.Stigma., 10(2), 127–130. https://doi.org/10.21082/jp3. v35n

Subbaiah, L. V, Prasad, T. N., Krishna, T. G., Reddy, B. R., & Pradeep, T. (2016). Novel effects of nanoparticulate delivery of zinc on growth, productivity and zinc bio-fortification in maize (Zea mays L.). Journal of Agricultural and Food Chemistry. https://doi.org/10.1021/acs.jafc.6b00838

Suganya, A., Appavoo, S., & Manivannan, N. (2020). Role of Zinc nutrition for increasing Zinc availability, uptake, yield, and quality of maize (Zea mays L.) gains: an overview. Communication in Soil Science and Plant Analysis, 51(15), 2001–2021.

Tariq, A., Anjum, S. A., Randhawa, M. A., Ullah, E., Naeem, M., Qamar, R., Ashraf, U., & Nadeem, M. (2014). Influence of zinc nutrition on growth and yield behaviour of maize (Zea mays L.) hybrids. American Journal of Plant Science, 5, 2646–2654.

Ullah, A., Farooq, M., Hussain, M., & Wakeel, A. (2019). Zinc seed priming improves stand establishment, tissue zinc concentration and early seedling growth of chickpea. Journal of Animal and Plant Sciences, 29(4), 1046–1063.

Valencia, E., & Purwanto, G. M. (2020). Artificial rice as an alternative functional food to support food diversification program. KnE Life Sciences, 177–186.




DOI: https://doi.org/10.15575/35351

Refbacks

  • There are currently no refbacks.


Creative Commons Licence

Jurnal Agro (J. Agro: ISSN 2407-7933) by http://journal.uinsgd.ac.id/index.php/ja/index is licensed under a Creative Commons Attribution 4.0 International License.