Adjustment of phosphorus concentration to increase growth and yield of cherry tomato using hydroponic drip system


Cecep Hidayat(1*), Budi Frasetya(2), Ilman N Syamsudin(3)

(1) Scopus ID: 57200565548, Program Studi Agroteknologi, Fakultas Sains dan Teknologi, Universitas Islam Negeri Sunan Gunung Djati, Indonesia
(2) ,  
(3) ,  
(*) Corresponding Author

Abstract


The phosphorus element plays an essential role in plant growth both at the vegetative and generative phases, so its concentration modification in the nutrient solution is necessary to stimulate vegetative growth and crop yield. The research aimed to know the influence of different phosphorus concentrations on growth and yield of cherry tomato using a hydroponic drip irrigation system, conducted from February to June 2017 at Green House Research Station of  Universitas Padjajaran Jatinangor using Completely Randomized Design with five treatments and five replications. The treatments were: phosphorous concentration of 100 ppm (P/N ratio 0.4), 125 ppm (P/N ratio 0.5), 150 ppm (P/N ratio 0.6), 175 ppm (P/N ratio 0.7), and 200 ppm (P/N ratio 0.8). The results showed that the increasing concentration of phosphorus improved crops height at the end of the vegetative phase, increased the number of flowers from the beginning to the end of the generative period, was able to prevent the flower fall, enhanced harvest index and weight of tomato fruit significantly at harvest time. Application of 200 ppm phosphorus concentration can increase growth and yield of cherry tomato.

 

Unsur fosfor berperan penting dalam pertumbuhan tanaman pada fase vegetatif maupun fase generatif. Konsentrasi unsur P pada nutrisi tanaman sangat penting untuk merangsang pertumbuhan vegetatif dan hasil panen. Penelitian ini bertujuan untuk mengetahui pengaruh ragam kosentrasi unsur posfor terhadap pertumbuhan dan hasil tanaman tomat cherry pada sistem hidroponik irigasi tetes. Penelitian telah dilaksanakan pada bulan Februari sampai Juni 2017 di Green House Universitas Padjadjaran Jatinangor menggunakan rancangan acak lengkap terdiri dari lima perlakuan dan lima ulangan. Perlakuan konsentrasi posfor, yaitu 100 ppm (rasio P/N 0,4), 125 ppm (rasio P/N 0,5), 150 ppm (rasio P/N 0,6); 175 ppm (rasio P/N 0,7), dan 200 ppm (rasio P/N 0,8). Hasil penelitian menunjukkan bahwa peningkatan konsentrasi posfor meningkatkan tinggi tanaman pada akhir fase vegetatif, meningkatkan jumlah bunga dari awal sampai akhir fase generatif, mengurangi jumlah bunga gugur, meningkatkan indeks panen dan berat buah. Aplikasi konsentrasi posfor 200 ppm dapat meningkatkan pertumbuhan dan hasil tanaman tomat cherry.


Keywords


Cherry tomato, concentrations, drip irrigation, hydroponic, phosphorus

Full Text:

PDF

References


Aldana, M. E. (2005). Effect of phosphorus and potassium fertility on fruit quality. LSU Master’s Theses. Lousiana State University. Retrieved from http://digitalcommons.lsu.edu/gradschool_theses

Aprile, F., & Lorandi, R. (2012). Evaluation of cation exchange capacity ( CEC ) in tropical soils using four different analytical methods. Journal of Agricultural Science, 4(6), 278–289. https://doi.org/10.5539/jas.v4n6p278

Basirat, M., Malboobi, M. A., Mousavi, A., Asgharzadeh, A., & Samavat, S. (2011). Effects of phosphorous supply on growth, phosphate distribution and expression of transporter genes in tomato plants. Australian Journal of Crop Science, 5(5), 537–543.

Chang, D. C., & Lee, Y. B. (2015). Response of potatoes to different nutrient solution management in a closed hydroponic system. Journal of Plant Nutrition, 4167(May), 00–00. https://doi.org/10.1080/01904167.2015.1109120

Cole, J. C., Smith, M. W., Penn, C. J., Cheary, B. S., & Conaghan, K. J. (2016). Nitrogen, phosphorus, calcium, and magnesium applied individually or as a slow release or controlled release fertilizer increase growth and yield and affect macronutrient and micronutrient concentration and content of field-grown tomato plants. Scientia Horticulturae, 211, 420–430. https://doi.org/10.1016/j.scienta.2016.09.028

Fandi, M., Muhtaseb, J., & Hussein, M. (2010). Effect of N , P , K concentrations on yield and fruit quality of tomato (Solanum lycopersicum L.) in tuff culture. Journal of Central European Agriculture, 11(2), 179–184.

Gad, N., & Kandil, H. (2010). Influence of cobalt on phosphorus uptake, growth and yield of tomato. Agriculture and Biology Journal of North America, 1(5), 1069–1075. https://doi.org/10.5251/abjna.2010.1.5.1069.1075

Grennan, A. K. (2008). Phosphate Accumulation in Plants: Signaling. Plant Physiology, 148(1), 3–5. https://doi.org/10.1104/pp.104.900269

Herrero, B., Blázquez, M. E., & Cristóbal, M. D. (2014). Nutrient levels in a productive cycle of hydroponic tomato crop. Bulgarian Journal of Agricultural Science, 21(1), 160–166.

Hidayat, C., Pahlevi, M. R., Taufiqqurahman, B. F., & Ramdhani, M. A. (2018). Growth and yield of chili in nutrient film technique at different electrical conductivity. IOP Conference Series: Materials Science and Engineering, 288(1). https://doi.org/10.1088/1757-899X/288/1/012034

Krishnan, A., Indiresh, K. M., & Anjanappa, M. (2014). Effect of water soluble fertilizers on growth and yield of tomato ( Solanum lycopersicum L .). Journal of Tropical Agriculture, 52(2), 154–157.

Mason, J. (2014). Commercial Hydroponics (3rd ed.). Tennessee: Kangaroo Press.

Nowaki, R. H. D., Parent, S.-É., Cecílio Filho, A. B., Rozane, D. E.,

Meneses, N. B., Silva, J. A. dos S. da, Parent, L. E. (2017). Phosphorus over-fertilization and nutrient misbalance of irrigated tomato crops in Brazil. Frontiers in Plant Science, 8(May), 1–11. https://doi.org/10.3389/fpls.2017.00825

Resh, H. M. (2013). Hydroponic food production (7th ed.). New York: CRS Press.

Reshma, T., & Sarath, P. S. (2017). Standardization of growing media for the hydroponic cultivation of tomato. International Journal of Current Microbiology and Applied Sciences, 6(7), 626–631.

Wijayani, A., & Widodo, W. (2005). Increasing of tomatoes quality in hydroponic culture. Ilmu Pertanian, 12(1), 77–83.

Wortman, S. E. (2015). Crop physiological response to nutrient solution electrical conductivity and pH in an ebb-and-flow hydroponic system. Scientia Horticulturae, 194, 34–42. https://doi.org/10.1016/j.scienta.2015.07.045

Wu, M., & Kubota, C. (2008). Effects of high electrical conductivity of nutrient solution and its application timing on lycopene , chlorophyll and sugar concentrations of hydroponic tomatoes during ripening. Scientia Horticulturae, 116, 122–129. https://doi.org/10.1016/j.scienta.2007.11.014

Youssef, M. A., & Eissa, M. A. (2017). Comparison between organic and inorganic nutrition for tomato. Journal of Plant Nutrition, 40(13), 1900–1907. https://doi.org/10.1080/01904167.2016.1270309




DOI: https://doi.org/10.15575/3658

Refbacks

  • There are currently no refbacks.


Creative Commons Licence

Jurnal Agro (J. Agro: ISSN 2407-7933) by http://journal.uinsgd.ac.id/index.php/ja/index is licensed under a Creative Commons Attribution 4.0 International License.