Analisis morfometrik menunjukkan hubungan berkebalikan antara jumlah dan ukuran biji pada Reutealis trisperma

Authors

  • Dewi Nur Rokhmah Research Center for Estate Crops, National Research and Innovation Agency, Bogor, Indonesia https://orcid.org/0000-0003-3208-4029
  • Dani Research Center for Estate Crops, National Research and Innovation Agency, Bogor, Indonesia
  • Himawan Bayu Aji Research Center for Estate Crops, National Research and Innovation Agency, Bogor, Indonesia
  • Apresus Sinaga Research Center for Estate Crops, National Research and Innovation Agency, Bogor, Indonesia

DOI:

https://doi.org/10.15575/j.agro.38399

Keywords:

Biodiesel, Empty locule, Morphometric, Philipine tung, Resource-allocation

Abstract

The fitness of many angiosperm plants, including Reutealis trisperma, is affected by the size and number of fruit and seed. However, studies on the fruit and seed morpho-physiology of R. trisperma are still highly limited.  This study aimed to identify the variation of locule and seed number besides the fruit and seed morphometric traits of R. trisperma. The number of locules and seeds per fruit was observed in immature, developing R. trisperma fruits. These observations were made by cross-sectioning R. trisperma that was obtained from field collections. Morphometric data collection was subsequently carried out on sampled mature fruits. The results showed that the locule and seed number of  the single fruit of R. trisperma ranged from 2 to 4 and 1 to 4, respectively. Trilocular fruits  were the most commonly found type. However, some of trilocular fruits were consisted of two seeds (two-seeded fruits) instead of three seeds (three seeded fruits). The proportion of two-seeded fruits was comparable to the three seeded fruits. No significant differences were found in fruit size or weight between two-seeded and three-seeded fruits. However, the seed weight, as well as the kernel weight, were heavier for two-seeded fruits compared to three-seeded fruits. Therefore, it revealed a seed size-number trade-off. These results can enrich the valuable informations related to the growth and development as well as the fitness of R. trisperma.

 

ABSTRAK

Daya reproduksi beberapa tanaman angiosperma, termasuk Reutealis trisperma, dipengaruhi oleh ukuran serta jumlah buah dan biji. Namun demikian, masih sangat sedikit penelitian yang telah dilakukan terkait morfo-fisiologi buah dan biji pada spesies tanaman tersebut. Penelitian ini bertujuan untuk mengidentifikasi variasi jumlah lokulus dan biji serta sifat morfometrik buah dan biji dari R. trisperma. Pengamatan jumlah lokulus dan biji per buah dilakukan pada buah muda R. trisperma yang sedang berkembang. Pengamatan dilakukan dengan cara memotong secara melintang R. trisperma yang didapatkan dari koleksi lapangan. Pengumpulan   data   morfometrik   kemudian  dilakukan pada buah matang yang diambil sebagai sampel. Hasil penelitian menunjukkan bahwa jumlah lokulus dan biji dari satu buah R. trisperma berkisar antara 2 hingga 4 dan 1 hingga 4, berturut-turut. Buah trilokular adalah jenis buah yang paling umum dari spesies ini. Namun, beberapa buah trilokular terdiri dari dua biji (buah berbiji dua) bukan berisi tiga biji (buah berbiji tiga). Proporsi buah berbiji dua sebanding dengan buah bebiji tiga. Sementara itu, tidak ada perbedaan ukuran buah maupun bobot buah antara buah berbiji dua dan buah berbiji tiga. Di sisi lain, bobot per biji serta bobot per kernel lebih berat pada buah berbiji dua dibandingkan buah berbiji tiga. Hasil tersebut membukitkan adanya hubungan berkebalikan antara jumlah dan ukuran biji. Hasil penelitian dapat memperkaya informasi mengenai pertumbuhan dan perkembangan tanaman serta fitness pada spesies R. trisperma.

Kata kunci: Alokasi sumber, Biodiesel, Kemiri sunan, Lokus hampa, Morfometrik

References

Ajijah, N., Wicaksono, I. N. A., & Syafaruddin. (2009). Karakteristik morfologi bunga. In Anonymous (Ed.), Kemiri Sunan Penghasil Biodiesel Solusi Masalah Energi Masa Depan: Suatu Bunga Rampai (pp. 45–54). Unit Penerbitan & Publikasi Balittri.

Ambika, S., Manonmani, V., & Somasundaram, G. (2014). Review on effect of seed size on seedling vigour and seed yield. Research Journal of Seed Science, 7(2), 31–38. https://doi.org/10.3923/rjss.2014.31.38

Basaroh, A. S., Afiyanti, M., Kusnadi, J., & Arumingtyas, E. L. (2024). Genes responsible in the shape and size of Solanaceae fruits. In W. A. Putri, D. S. Priyono, F. Pa’ee, Y. Yano, R. L. Daniel, P. Alam, H. W. Yen, M. D. Lawrie, A. Linggawati, A. A. Putri Anfa, H. H. Prinanda, D. Blatama, H. Adzkiya, M. Khoerul, & J. Hibatullah (Eds.), BIO Web of Conferences 8 th ICBS 2023 (Vol. 94, p. 05006). EDP Sciences. https://doi.org/10.1051/bioconf/20249405006

Bennett, E., Roberts, J. A., & Wagstaff, C. (2012). Manipulating resource allocation in plants. In Journal of Experimental Botany 63(9), pp. 3391–3400). https://doi.org/10.1093/jxb/err442

Bogdziewicz, M., Acuña, M. C. A., Andrus, R., Ascoli, D., Bergeron, Y., Brveiller, D., Boivin, T., Bonal, R., Caignard, T., Cailleret, M., Calama, R., Calderon, S. D., Camarero, J. J., Chang-Yang, C. H., Chave, J., Chianucci, F., Cleavitt, N. L., Courbaud, B., Cutini, A., Clark, J. S. (2023). Linking seed size and number to trait syndromes in trees. Global Ecology and Biogeography, 32(5), 683–694. https://doi.org/10.1111/geb.13652

Chu, Y. H., Jang, J. C., Huang, Z., & van der Knaap, E. (2019). Tomato locule number and fruit size controlled by natural alleles of lc and fas. Plant Direct, 3(7). https://doi.org/10.1002/pld3.142

Dani, Purwoko, B. S., Wahyu, Y., Syukur, M., & Syafaruddin. (2024). Hybrid seed success of Coffea canephora x C. arabica interspecific heteroploid crossing direction. SABRAO Journal of Breeding and Genetics, 56(3), 1012–1021. https://doi.org/10.54910/sabrao2024.56.3.10

Domic, A. I., Capriles, J. M., & Camilo, G. R. (2020). Evaluating the fitness effects of seed size and maternal tree size on Polylepis tomentella (Rosaceae) seed germination and seedling performance. Journal of Tropical Ecology, 36(3), 115–122. https://doi.org/10.1017/S0266467420000061

Gnan, S., Priest, A., & Kover, P. X. (2014). The genetic basis of natural variation in seed size and seed number and their trade-off using Arabidopsis thaliana magic lines. Genetics, 198(4), 1751–1758. https://doi.org/10.1534/genetics.114.170746

Holilah, H., Prasetyoko, D., Oetami, T. P., Santosa, E. B., Zein, Y. M., Bahruji, H., Fansuri, H., Ediati, R., & Juwari, J. (2015). The potential of Reutealis trisperma seed as a new non-edible source for biodiesel production. Biomass Conversion and Biorefinery, 5(4), 347–353. https://doi.org/10.1007/s13399-014-0150-6

Kadapi, M., Nuraini, A., Setiyo, A. W., & Lestari, S. A. (2018). The Relationship between seed size and seed quality in UNPAD new seed collection of sweet corn lines after storage. Advances in Engineering Research, 172, 122–125.

Larios, E., & Mazer, S. J. (2022). Genotype × environment interaction obscures genetic sources of variation in seed size in Dithyrea californica but provides the opportunity for selection on phenotypic plasticity. American Journal of Botany, 109(11), 1847–1860. https://doi.org/10.1002/ajb2.16091

Li, J., & Berger, F. (2012). Endosperm: Food for humankind and fodder for scientific discoveries. New Phytologist, 195(2), 290–305. https://doi.org/10.1111/j.1469-8137.2012.04182.x

Lu, Y., Huang, Y. S., Chen, C. H., Akiyama, T., Morris-Natschke, S. L., Cheng, Y. Y., Chen, I. S., Yang, S. Z., Chen, D. F., & Lee, K. H. (2020). Anti-HIV tigliane diterpenoids from Reutealis trisperma. Phytochemistry, 174, 112360. https://doi.org/10.1016/j.phytochem.2020.112360

Marinoni, L., Zabala, J. M., Quiroga, R. E., Richard, G. A., & Pensiero, J. F. (2022). Seed weight and trade-offs: An experiment in false Rhodes grasses under different aridity conditions. Plants, 11(21). https://doi.org/10.3390/plants11212887

Massimi, M. (2018). Impact of seed size on seeds viability, vigor and storability of Hordeum vulgare (L.). Agricultural Science Digest - A Research Journal, 38(1), 62–64. https://doi.org/10.18805/ag.a-293

Nepal, S., Tripathi, S., & Adhikari, H. (2021). Geospatial approach to the risk assessment of climate-induced disasters (drought and erosion) and impacts on out-migration in Nepal. International Journal of Disaster Risk Reduction, 59, 102241. https://doi.org/10.1016/j.ijdrr.2021.102241

Nugroho, D., Basunanda, P., & Mw, S. (2016). Physical bean quality of Arabica coffee (Coffea arabica) at high and medium altitude. Edition Pelita Perkebunan, 32(3), 2016.

Olejniczak, P., Czarnoleski, M., Delimat, A., Majcher, B. M., & Szczepka, K. (2018). Seed size in mountain herbaceous plants changes with elevation in a species-specific manner. PLoS ONE, 13(6). https://doi.org/10.1371/journal.pone.0199224

Pramono, A. A., Syamsuwida, D., & Putri, K. P. (2019). Variation of seed sizes and its effect on germination and seedling growth of mahogany (Swietenia macrophylla). Biodiversitas, 20(9), 2576–2582. https://doi.org/10.13057/biodiv/d200920

Pranowo, D., Herman, M., & Syafaruddin. (2015). Potensi pengembangan kemiri sunan (Reutealis trisperma [Blanco] Airy Shaw). Perspektif, 14(2), 87–101. http://www.indonesia-investments.com,

Prasetya, D. N., Hamim, & Sulistyaningsih, Y. C. (2022). Physiological and ultrastructural studies of Jatropha curcas and Reutealis trisperma in response to gold-mine tailings. Biodiversitas, 23(7), 3471–3479. https://doi.org/10.13057/biodiv/d230721

Qiu, T., Andrus, R., Aravena, M. C., Ascoli, D., Bergeron, Y., Berretti, R., Berveiller, D., Bogdziewicz, M., Boivin, T., Bonal, R., Bragg, D. C., Caignard, T., Calama, R., Camarero, J. J., Chang-Yang, C. H., Cleavitt, N. L., Courbaud, B., Courbet, F., Curt, T., … Clark, J. S. (2022). Limits to reproduction and seed size-number trade-offs that shape forest dominance and future recovery. Nature Communications, 13(1), 2381. https://doi.org/10.1038/s41467-022-30037-9

Ram, A. S., Sreenivasan, M. S., & Ramaiah, P. K. (1990). A Study of peaberry development: Its implications in coffee breeding. J. Coffee Res, 20(1), 69–76. https://www.researchgate.net/publication/316927349

Riadi, L., Agustin, Y. E., Kusuma, L. D., Sutrisno, P. F., & Utami, T. P. (2019). Reutealis trisperma press cake induced production of xylanase by Trichoderma reesei: Effect of C/N ratio and initial pH. AIP Conference Proceedings, 2085, 020014. https://doi.org/10.1063/1.5094992

Riayatsyah, T. M. I., Ong, H. C., Chong, W. T., Aditya, L., Hermansyah, H., & Mahlia, T. M. I. (2017). Life cycle cost and sensitivity analysis of reutealis trisperma as non-edible feedstock for future biodiesel production. Energies, 10(7). https://doi.org/10.3390/en10070877

Sari, G. R., Satrio, M. A., Mulyaningsih, R., Irene, I. A., & Paramita, V. (2020). Utilization of Alurities trisperma oil as biodiesel. Journal of Vocational Studies on Applied Research, 2(1), 16–22. https://doi.org/10.14710/jvsar.v2i1.7677

Simpson, M. G. (2019). Plant Morphology. In Plant Systematics (pp. 469–535). Elsevier. https://doi.org/10.1016/b978-0-12-812628-8.50009-2

Souza, L. A. de. (2022). Fruit and seed evolution in angiosperms. International Journal of Science and Technology Research Archive, 3(2), 133–153. https://doi.org/10.53771/ijstra.2022.3.2.0136

Stuppy, W., Van, P. C., Klinratana, W. P., & Posa, M. C. T. (1999). Revision of the genera Aleurites, Reutealis and Vernicia (Euphorbiaceae). BLUMEA, 44, 73–98.

Waseem, A., Tayyib, M., Shahab-Ud-Din, Abid, A., Abdin, Z. U., Cho, S. R., & Lee, H. Il. (2024). Laboratory and field performances of WHO approved insecticides used in dengue control program. Pakistan Journal of Agricultural Sciences, 61, xxx–xxx.

Wu, J., Li, P., Li, M., Zhu, D., Ma, H., Xu, H., Li, S., Wei, J., Bian, X., Wang, M., Lai, Y., Peng, Y., Li, H., Rahman, A., & Wu, S. (2024). Heat stress impairs floral

meristem termination and fruit development by affecting the BR-SlCRCa cascade in tomato. Plant Communications, 5(4), 100790. https://doi.org/10.1016/j.xplc.2023.100790

Xiang, H., Meng, S., Ye, Y., Han, L., He, Y., Cui, Y., Tan, C., Ma, J., Qi, M., & Li, T. (2023). A molecular framework for lc controlled locule development of the floral meristem in tomato. Frontiers in Plant Science, 14. https://doi.org/10.3389/fpls.2023.1249760

Xu, G., & Zhang, X. (2023). Mechanisms controlling seed size by early endosperm development. Seed Biology, 2. https://doi.org/10.48130/SeedBio-2023-0001

Zhang, M., Zhou, E., Li, M., Tian, S., & Xiao, H. (2023). A SUPERMAN-like gene controls the locule number of tomato fruit. Plants, 12(18), 3341. https://doi.org/10.3390/plants12183341

Downloads

Published

2025-07-31

How to Cite

Rokhmah, D. N., Dani, D., Aji, H. B., & Sinaga, A. (2025). Analisis morfometrik menunjukkan hubungan berkebalikan antara jumlah dan ukuran biji pada Reutealis trisperma. Jurnal AGRO, 12(1), 1–10. https://doi.org/10.15575/j.agro.38399

Issue

Section

Original Research Articles

Citation Check