

Jurnal Pendidikan Islam 12 (1) (2026) 75-88

DOI: https://doi.org/10.15575/jpi.v12i1.42091

http://journal.uinsgd.ac.id/index.php/jpi

p-ISSN: 2355-4339

e-ISSN: 2460-8149

COMPUTATIONAL THINKING AND MATHEMATICAL PROBLEM SOLVING
IN MADRASAH TSANAWIYAH STUDENTS

I Made Suarsana1, Tatang Herman1, Elah Nurlaelah1*, Didi Suryadi1, Irianto2, Al Jupri1, Asep
Bayu Dani Nandiyanto3, Zulkaidah Nur Ahzan4

1Department of Mathematics Education, Universitas Pendidikan Indonesia, Bandung, Indonesia
2Department General Education, Rabdan Academy, Abu Dhabi, United Arab Emirates
3Department of Chemistry, Universitas Pendidikan Indonesia, Bandung, Indonesia
4Mathematics Education Study Program, Universitas Timor, Nusa Tenggara Timur, Indonesia
*Corresponding Email: elah_nurlaelah@upi.edu

Received: December 2024. Accepted: May 2025. Online First: January 2026. Published: June 2026

ABSTRACT
The integration of computational thinking into mathematics learning is increasingly important in
preparing students for problem-solving in the digital era, and visual programming tools such as
Flowgorithm offer potential pedagogical support. This study analyzes the effect of Flowgorithm-assisted
instruction on students’ computational thinking skills and mathematical problem-solving abilities. A
quasi-experimental pretest–posttest control group design was employed and implemented in two phases:
a programming phase and a mathematics learning phase. The population consisted of all eighth-grade
students at Madrasah Tsanawiyah in Bali Province, Indonesia, from which 34 students were selected
using cluster random sampling (20 in the experimental group and 14 in the control group). Data on
computational thinking and mathematical problem-solving abilities were collected using achievement
tests and analyzed using MANCOVA, followed by post hoc tests, with effect sizes reported using partial
eta squared. The findings reveal significant differences between the experimental and control groups,
with post hoc analysis indicating that Flowgorithm-assisted mathematics learning significantly improved
students’ computational thinking skills, while no significant difference was found in mathematical
problem-solving abilities. Despite a non-significant effect on problem-solving, the integration of
Flowgorithm showed no negative impact, suggesting that Flowgorithm-assisted instruction can be a
viable approach for embedding computational thinking concepts into mathematics curricula and
instructional practices.

Keywords: Computational Thinking, Flowgorithm, Problem-Solving, Programming, Madrasah

INTRODUCTION
The significance of computational thinking (CT) abilities in 21st-century life skills has been
widely recognized (Haseski et al., 2018). CT is a skill essential for individuals to succeed in global
competition; therefore, efforts should be made to integrate CT into schools (Miterianifa et al.,
2021). Thus, the CT concept, initially developed in computer science, needs to be adapted and
expanded to the field of education, especially learning in schools. Initially, Jeannette Wing
defined CT as a thinking process for formulating problems and solutions, representing them
effectively through information processing agents (Varela et al., 2019). After that, the definition
of CT developed rapidly and tended to diverge. A unique CT framework for mathematics
learning was revealed by Weintrop et al. (2015), who divided CT into four categories: data
practices, modeling and simulation practices, computational problem-solving practices, and
systems thinking practices. Concerning the CT capability aspect, Selby and Woollard (2014) and
Hoyles and Noss (2015) break it down into four aspects, also known as PRADA (pattern
recognition, abstraction, decomposition, algorithm). The current research trend in CT
integration for mathematics teaching utilizes the PRADA framework (Irawan et al., 2024).

mailto:elah_nurlaelah@upi.edu

I Made Suarsana, Tatang H, Elah N, Didi S, Irianto, Al Jupri, Asep Bayu D N, Zulkaidah N A

76 Vol. 12, No. 1, June 2026 M/1447 H

Other trends in CT research within mathematics education were further unveiled by Ye
et al. (2023) through a systematic literature review. Their findings indicated that a common
intervention to foster CT in math education is the inclusion of programming activities. The
current potential for integrating programming tasks into school curricula, particularly within
junior high school mathematics education, presents a significant opportunity to enhance CT
skills and mathematical performance (Chan et al., 2022), particularly in the context of problem-
solving (Robins et al., 2003; Ye et al., 2023). Prior researchers had undertaken various studies
on incorporating programming into math education. Cameto et al. (2019), Carboni et al. (2018),
and Zeng et al. (2023) integrated the MateFun programming language into function learning in
junior high schools, noting no substantial difference in math abilities compared to traditional
methods, yet students gained fundamental programming knowledge. MateFun, a text-based
language utilizing function commands as primary computing units, was employed. Yuana et al.
(2015) demonstrated that blending science-based programming with virtual robots in 10th-grade
math classes facilitates the comprehension of math concepts while introducing programming
principles. Park and Manley (2024) observed that text-based programming integration enhanced
11th-grade students’ grasp of mathematical concepts. Iwamoto and Matsumoto (2019) found
that utilizing a visual block editor in junior high math education significantly improved math
learning outcomes. Furthermore, Spencer et al. (2023) discovered that integrating visual
programming languages into elementary math education could enhance student engagement
with mathematical concepts, support problem-solving and reasoning skills, and encourage
mathematical discourse.

Overall, previous research demonstrated that integrating programming into
mathematics education, whether visual-based or text-based, did not negatively influence it.
Furthermore, a significant benefit was the early introduction of computational thinking
concepts. Literature reviews indicated that research on programming integration in junior high
school mathematics had predominantly involved visual or block-based programming
(Karaliopoulou et al., 2018; Ye et al., 2023; Yi & Lee, 2018), such as Scratch (Park & Shin, 2022).
Visual programming tools like Scratch appealed to school-aged students because they made
learning enjoyable; however, challenges can arise when transitioning from visual to text-based
coding (Yadav et al., 2016; Papadakis & Kalogiannakis, 2019). Text-based programming
languages were preferred for developing coding skills, although they were often considered
complex for students at the school level (Weintrop & Wilensky, 2017). Flowgorithm, a user-
friendly graphical flowchart-based programming language for beginners (Gajewski &
Smyrnova-Trybulska, 2018), served as a potential solution for bridging the gaps between visual
and text-based programming (Xu et al., 2019). Students could focus on programming concepts
through flowcharts, facilitating a smoother transition to actual coding (Ho et al., 2021).
Additionally, flowcharts created could be directly converted into over 18 languages, including
C#, C++, Java, JavaScript, Lua, Perl, Python, Ruby, Swift, Visual Basic .NET, and VBA.

The integration of Flowgorithm, a combination of block-based and text-based
programming, in mathematics learning has been an area of research that has received limited
attention. Studies on the effectiveness of using flowchart programming were mainly conducted
in computer science to introduce programming concepts and enhance problem-solving abilities
(Hooshyar et al., 2015). Flowgorithm has been demonstrated as an effective tool in
programming classes for presenting algorithms and their results (Gajewski & Smyrnova-
Trybulska, 2018), clearly distinguishing between programming (creating algorithms) and coding
(translating algorithms into specific programming languages). To bridge this gap, the present
study aimed to explore the integration of Flowgorithm into mathematics learning within the
unique context of Madrasah Tsanawiyah (MTs), investigating its potential impact on both
computational thinking and mathematical problem-solving abilities, areas that had received

Computational Thinking Skill and Mathematics Problem Solving using Flowgorithm …

 Vol. 12, No. 1, June 2026 M/1447 H 77

limited attention in prior research. Consequently, a quasi-experimental study was carried out
with a population of grade 8 students, specifically targeting students from MTs in Bali Province.
These MTs are formal schools that focus on Islamic education, equivalent to junior high level,
resembling public schools with Islamic characteristics (Maryati et al., 2023). No previous studies
have investigated the integration of programming into mathematics learning at Islamic boarding
schools. Hence, the novelty of this research lies in integrating hybrid programming into
mathematics education and involving research subjects from formal schools with Islamic
characteristics. Another novel aspect examined the influence of programming integration on
mathematical problem-solving abilities. Prior research had only revealed the impact of
programming activities on general mathematics performance, including understanding
mathematical concepts and processes, interest in mathematics (Goldenberg & Carter, 2021),
and self-efficacy (Chiang et al., 2022). Despite indications from Kuen (2011) that programming
activities had the potential to develop problem-solving skills, no experimental research had
explicitly examined the effect of programming activities on problem-solving abilities

METHOD

The research involved all grade 8 students from 36 MTs in Bali Province. Using a simple
cluster random sampling technique, the researchers randomly selected 2 classes from the 8th-
grade population, yielding a sample of 2. These classes were from MTS Mambaus Sholihin
Jembrana, comprising 18 students, and MTs Kalifa Nusantara, Denpasar, with 26 students in
the 8th grade. Subsequently, randomization was conducted to assign participants to the control
and experimental groups. Initially comprising 44 participants, there was a loss of 10 participants
whose data had to be excluded as they did not engage fully in the research phase. Consequently,
the research samples comprised the control group from MTs Mambaus Sholihin (14 members;
6 males, 8 females) and the experimental group from MTs Kalifa Nusantara (20 members; 7
males, 13 females). Neither group possessed prior knowledge or skills in programming with
Flowgorithm.

The research design for this study involved a quasi-experimental approach with two
phases implemented in both the experimental and control groups. More details are presented in
Figure 2. The first stage, the programming phase, involved acquiring fundamental knowledge
and skills necessary for programming using Flowgorithm. This phase was administered to both
groups, each lasting 90 minutes, totaling three sessions. The CT concepts covered in this phase
included basic sequences, loops, iteration, conditionals, functions, and variables (Román-
González et al., 2017). These CT concepts were deemed suitable for students aged 12-14 years
(grades 7 and 8) (Tsarava et al., 2022) and were aligned with the CT framework proposed by
Brennan and Resnick (2012) as well as the computer science standards for grades 6-9 established
by the Computer Science Teachers Association (Seehorn et al., 2011).

I Made Suarsana, Tatang H, Elah N, Didi S, Irianto, Al Jupri, Asep Bayu D N, Zulkaidah N A

78 Vol. 12, No. 1, June 2026 M/1447 H

Computational Thinking

Pre-test

Programming Phase

Mathematics Problem-

Solving Pre-test

Mathematics

Phase

Computational Thinking

Post-test & Mathematics

Problem-Solving Pre-test

- Test adopted from Román-González et al., 2017

- consists of 14 multiple choice questions with 4 answer options, time allocation is 60 minutes

- Scope: i) basic sequences, (ii) loops, (iii) iteration, (iv) conditionals, (v) functions and (vi) variables

Introduction to Programming with Flowgorithm

- Session 1: Basic sequences, Loops, And Iteration

- Session 2: Conditionals

- Session 3: Function and Variables

Description test

- consists of 4 questions, time allocation is 60 minutes

- Scope: solving problems related to straight line equations and gradients.

Experimental Group: Solving mathematical problems with Flowgorithm

- Session 1: Solving problems related to straight line equations

- Session 2: Solving problems related to straight line gradients

- Session 3: Problem solving related to relationships between lines

Experimental Group: Solving mathematical problems with paper and pencil settings

- Session 1: Solving problems related to straight line equations

- Session 2: Solving problems related to straight line gradients

- Session 3: Problem solving related to relationships between lines

A test that is equivalent to a pre-test

Score Pre-Test CT EG

Score Pre-Test CT CG

Score Pre-Test MPS EG

Score Pre-Test MPS CG

Score Pre-Test CT EG

Score Pre-Test CT CG

Score Pre-Test MPS EG

Score Pre-Test MPS CG

Figure 1. Research Procedure

In the second phase, known as the mathematics phase, the emphasis shifted to problem-
solving tasks, with Flowgorithm used as an instructional aid. Students participated in 3 sessions
focused on solving problems involving straight-line equations, aligning with the learning
objectives outlined in the Indonesian curriculum. Session 1 focused on determining the gradient
of a straight line. Session 2 involved solving problems to establish the relationship between two
straight lines. In Session 3, students engaged in problem-solving exercises to identify the
equation of a straight line.

In contrast to the first phase, the second phase involved distinct treatments for the
experimental and control groups. The experimental group utilized a Flowgorithm to tackle
assigned tasks, whereas the control group completed the tasks without the aid of a Flowgorithm,
relying on traditional tools like paper and pencil. Each session occurred twice a week.

Before the programming phase, both groups underwent a pre-test to evaluate their initial
CT skills. Similarly, before the commencement of the mathematics phase, students also took a
pre-test to gauge their initial mathematical problem-solving abilities. All assessments conducted
in this study lasted 60 minutes and were conducted concurrently for both groups. At the end of
the second phase, both groups of students participated in two post-tests to assess their CT and
mathematical problem-solving abilities. Contrasting the pre-test and post-test results will enable
an analysis of the progress in acquiring CT concepts and mathematical problem-solving skills
under each experimental condition.

The study utilized two instruments: a CT test and a mathematics problem-solving test.
The CT test, adapted from Román-González et al. (2017), comprised 14 multiple-choice items
targeting seven computing concepts, including loops, conditionals, and simple functions,

designed for grade 7 and 8 students. The test demonstrated validity (0.27 < 𝑟 < 0.44) and

reliability (CCronbach’sAlpha 𝛼 = 0.793), with items arranged by increasing difficulty.
Equivalent pre-test and post-test versions were administered online via Google Forms, differing
only in question descriptions while maintaining consistent difficulty levels. The mathematics
problem-solving test focused on straight-line equations and comprised four multiple-choice
questions with four answer options. Two versions of the same test with identical structures and

Computational Thinking Skill and Mathematics Problem Solving using Flowgorithm …

 Vol. 12, No. 1, June 2026 M/1447 H 79

features were administered for both the pre-test and post-test. The researcher developed the
problem-solving ability tester and underwent validation by experts, alongside field trials that

confirmed the validity of the items (0.378 < 𝑟 < 0.9233) and a CCronbach’sAlpha reliability of

𝛼 = 0.760. Additionally, the test included a Certainty of Response Index (CRI) questionnaire
to distinguish between students who misunderstood the problem and those who did not
comprehend it (Putri et al., 2021). Students were required to indicate their confidence level in
each response, ranging from 100% guessing to 100% certainty.

Data analysis was performed on post-test score data with pre-test scores used as
covariates through multivariate analysis of covariance (MANCOVA). MANCOVA was selected
because it provided a stronger hypothesis test compared to analysis of variance (Dugard &
Todman, 1995). The MANCOVA calculations were carried out using the IBM SPSS Statistics
29.0.1.0 application, employing general linear model multivariate statistics with the Bonferroni
correction. Effect size was calculated using Cohen’s formula (d) and partial eta squared statistics

(𝜂𝑝
2). Effect size interpretation, based on Cohen’s d and partial eta squared (𝜂𝑝

2), is categorized

as negligible (0 < 𝑑 < 0.2, 0 < 𝜂𝑝
2 < 0.01), small (0.2<d≤0.5, 0.01<𝜂𝑝

2≤0.06), medium

(0.5<d≤0.8, 0.06<𝜂𝑝
2≤0.14), and large (d>0.8, 𝜂𝑝

2>0.14)(Gignac & Szodorai, 2016; Stephen &

Rockinson-Szapkiw, 2021).

RESULTS AND DISCUSSION
The pre-test and post-test results for each aspect of the CT concept are displayed in

Table 1. The optimal maximum score for each aspect of the CT Concept was 20, with 140 being
the ideal maximum score for the entire test. The scores for each CT concept showed that the
more complex the concept, the lower the average score. This pattern was consistent in the pre-
test and post-test for both the control and experimental groups. The average CT post-test scores
for the control and experimental groups were 83.571 and 104.500, respectively. There was a
descriptive increase in the CT score in each group compared to the pre-test score. Using

Cohen’s formula, the effect size (𝑑) in the control group and experimental group were 0.489
(small) and 0.716 (medium), respectively. The improvement observed in the experimental group
was notably larger in quantity and quality.

Both groups exhibited increased CT scores when analyzed based on the CT concept
aspect. In the control group, the most significant increase in CT score was in the “loop repeat
until” aspect, while the smallest increase was noted in the “basic direction and sequence” aspect.
Conversely, in the experimental group, the most substantial increase in CT scores was seen in
the “If simple conditional” aspect, with the smallest increase also occurring in the “basic
direction and sequence” aspect. These results suggest that teaching basic CT concepts using
Flowgorithm in Phase I could enhance students’ CT abilities. Moreover, inferential statistics are
required to evaluate the impact of various treatments in Phase II on CT capabilities.

Table 1. CT Pre-test and Post-Test Score

CT Concept

Control Group Experiment Group

Pre-Test Post-Test Pre-Test Post-Test

Mean SD Mean SD Mean SD Mean SD

Basic directions and
sequences

18.571 3.631 19.286 2.673 20.000 0.000 20,000 0,000

Loops repeat times 15.714 5.136 17.857 4.258 18.000 4.104 19,500 2,236
Loops repeat until 11.429 8.644 15.000 6.504 13.000 6.569 17,000 4,702

If simple conditional 9.286 6.157 11.429 6.630 11.000 7.182 16,500 4,894
If/else complex

conditional
6.429 6.333 8.571 8.644 10.500 6.048 14,000 5,026

While conditional 5.000 5.189 7.857 5.789 7.500 5.501 10,000 6,489

I Made Suarsana, Tatang H, Elah N, Didi S, Irianto, Al Jupri, Asep Bayu D N, Zulkaidah N A

80 Vol. 12, No. 1, June 2026 M/1447 H

CT Concept

Control Group Experiment Group

Pre-Test Post-Test Pre-Test Post-Test

Mean SD Mean SD Mean SD Mean SD
Simple functions 2.857 4.688 3.571 4.972 6.000 5.982 7,500 6,387

Total 69.286 31.736 83.571 26.489 86 29.629 104.500 21.392
Cohen’s (d) 0.489 0.716

The results of the pre-test and post-test assessments of problem-solving abilities in the

straight-line equation material have been outlined in Table 2. The optimal maximum score for
each problem-solving item was 10, with the total test score ideally reaching 40. Upon reviewing
the scores per indicator, it became evident that many students encountered challenges when
solving problems related to determining points on a line with a known gradient/equation. This
pattern was consistent across the pre-test and post-test assessments for both the control group
and experimental group. The average post-test scores for problem-solving in the control group
and experimental group were 22.857 and 27.000, respectively. Descriptively, there was an
increase in problem-solving ability scores in each group compared to the pre-test results.

The effect size in the control group was d=1.022 (large), while in the experimental
group, it was d=1.301 (large). Quantitatively, the effect size in the experimental group exceeded
that of the control group, although both groups fell within the “large” effect size category. The
problem-solving test scores improved in both groups for each question item, indicating that
problem-solving activities using both Flowgorithm and traditional methods can enhance
students’ problem-solving abilities. Inferential statistics are essential to ascertain which
treatments can significantly impact the development of problem-solving skills.

Table 2. Mathematics Problem Solving Pre-test and Post-Test Score

Problem-Solving Indicator

Control Group Experiment Group

Pre-Test Post-Test Pre-Test Post-Test

Mean SD Mean SD Mean SD Mean SD

Determine the equation of a

straight line if the gradient and

the point through which it

passes are known.

0.714 2.673 3.571 4.972 1.500 3.663 5.500 5.104

Determine the point through

which a line passes if the

gradient/equation is known

0.714 2.673 1.429 3.631 0.500 2.236 2.500 4.443

Determine the gradient of a line

if the magnitude of the change

in the horizontal and vertical

directions is known

7.143 4.688 10.000 0.000 6.500 4.894 9.000 3.078

Determine the gradient

relationship of two parallel lines
5.714 5.136 7.857 4.258 8.000 4.104 10.000 0.000

Total 14.286 7.559 22.857 9.139 16.500 9.333 27.000 6.569

Cohen’s (d) 1.022 1.301

The post-test instrument for assessing mathematical problem-solving abilities was also

complemented with the CRI questionnaire. The results from the analysis, detailing accuracy and
students’ confidence levels, are presented in Table 3. In the control group, 12.50% of
respondents provided correct answers with a high confidence level, while 30.36% offered
incorrect answers with high confidence. This suggests that, among the 100 respondents in the

Computational Thinking Skill and Mathematics Problem Solving using Flowgorithm …

 Vol. 12, No. 1, June 2026 M/1447 H 81

control group, 13 individuals comprehended and applied the straight-line equation accurately,
31 misunderstood the concept, and the remaining 56 were unaware of it, often resorting to
guesses in their responses.

Conversely, in the experimental group, 23.75% of respondents answered correctly with
high confidence, and 28.75% answered incorrectly with high confidence. This indicates that out
of 100 respondents in the experimental group, 24 grasped and effectively applied the concept
in problem-solving, 29 misunderstood the concept, and 47 were unaware. The proportion of
students exhibiting a correct understanding in the experimental group exceeded that in the
control group, indicating that incorporating Flowgorithm in problem-solving activities
facilitated a deeper understanding of concepts than traditional paper-and-pencil methods.
Moreover, misconceptions among students in the experimental group were lower than in the
control group. Utilizing flowgorithm programming in mathematical problem-solving activities
proved to be more efficacious in mitigating misconceptions among students than conventional
paper-and-pencil methods.

Table 3. Percentage of Respondents Based on Answer Criteria

Answer Criteria
% Respondents

Problem 1 Problem 2 Problem 3 Problem 4 All

Control Group

True Answer High CRI Value (>2.5) 21,43 0,00 7,14 21,43 12,50
 Low CRI Value (< 2.5) 7,14 7,14 42,86 28,57 21,43

Wrong Answer Low CRI Value (< 2.5) 35,71 50,00 28,57 28,57 35,71
 High CRI Value (>2.5) 35,71 42,86 21,43 21,43 30,36
Experiment Group
True Answer High CRI Value (>2.5) 30,00 15,00 35,00 15,00 23,75
 Low CRI Value (< 2.5) 15,00 20,00 25,00 10,00 17,5
Wrong Answer Low CRI Value (< 2.5) 30,00 20,00 40,00 30,00 30
 High CRI Value (>2.5) 25,00 45,00 0,00 45,00 28,75

The descriptive outcomes mentioned above were subjected to significance testing for

differences or effects using inferential statistics. Prior to conducting the MANCOVA inferential
test, a prerequisite test was performed. In SPSS, a normality assessment was conducted on the
residual variables of the CT post-test and mathematics problem-solving post-test using the
Shapiro-Wilk test. The Shapiro-Wilk statistical value for the CT post-test residual variable was
0.977 with a significance of 0.673. Similarly, for the mathematics problem-solving post-test
residual, the Shapiro-Wilk statistical value was 0.960 with a significance of 0.244. As both
significance values were >0.05, the sample was concluded to be drawn from a normally
distributed population.

Subsequently, the homogeneity of the covariance matrix was assessed using Box’s test

as another prerequisite. The SPSS analysis indicated that Box’s M value was 2.582, 𝐹 = 0.800,
df1=3, df2=50,117 with a significance of 0.494 > 0.05, signifying that the covariance matrix
among groups was homogeneous. The third prerequisite involved testing the homogeneity of
variance using Levene’s test. The SPSS computations revealed that the F statistical value for the
post-test variable was 0.002, a significance of 0.964, and for the mathematics problem-solving
post-test variable, the F statistical value was 0.151 with a significance of 0.700. Given that both
significance values were >0.05, it was inferred that the two population variances were
homogeneous. Consequently, all prerequisite tests for the MANCOVA analysis were satisfied,
leading to the subsequent testing of hypothesis H0.

I Made Suarsana, Tatang H, Elah N, Didi S, Irianto, Al Jupri, Asep Bayu D N, Zulkaidah N A

82 Vol. 12, No. 1, June 2026 M/1447 H

H0: There is no significant difference in the use of Flowgorithm on students' CT abilities

and mathematical problem-solving skills after controlling for the pre-test covariate.

H1: There is a significant difference in the use of Flowgorithm on students' CT abilities and

mathematical problem-solving skills after controlling for the pre-test covariate.

The results of the MANCOVA test conducted using SPSS Statistics 29.0.1.0 with a
general linear multivariate model approach are presented in Table 4.

Table 4. Multivariate Tests

Effect Value F
Hypothes

is df
Error

df
Sig.

Partial Eta
Squared

Group Pillai’s Trace 0.256 4.988 2.000 29.000 0.014 0.256

Wilks’ Lambda 0.744 4.988 2.000 29.000 0.014 0.256

Hotelling’s
Trace

0.344 4.988 2.000 29.000 0.014 0.256

Roy’s Largest
Root

0.344 4.988 2.000 29.000 0.014 0.256

The Wilks’ Lambda statistic value is 0.744, and the effect size value. 𝜂𝑝
2 is 0.256 with a

significance of 0.014, which is less than 0.05. Therefore, it can be concluded that using
Flowgorithm has a significant impact on both computational thinking abilities and mathematical
problem-solving, while controlling for initial abilities. The effect size, as indicated by the

𝜂𝑝
2 value is considered “large”. The post hoc test utilized the Benferroni test to identify specific

differences between groups individually. The outcomes of the Benferroni post hoc test are
detailed in Table 5.

Table 5. Tests of Between-Subjects Effects

Source
Dependent

Variable

Type III
Sum of
Squares

df
Mean
Square

F Sig.
Partial

Eta
Squared

Group Computational
Thinking Post-test

425.913 1 425.913 6.523 0.01
6

0.179

Mathematics
Problem Solving
Post-test

59.900 1 59.900 2.219 0.14
7

0.069

The results of the Tests of Between-Subjects Effects on each dependent variable

indicated that the utilization of Flowgorithm in mathematics education had a significant impact

on CT abilities (𝐹 = 6.523, 𝜌 = 0.016, 𝜂𝑝
2 = 0.179) but did not yield a significant effect on

mathematical problem-solving abilities (𝐹 = 2.219, 𝜌 = 0.147, 𝜂𝜌2 = 0.069). The effect size
of employing Flowgorithm for each dependent variable was assessed using the partial eta
squared value as outlined in Table 1. The effect size for CT ability due to Flowgorithm
implementation fell in the “large” category, whereas for mathematical problem-solving ability,
it was “medium”. Therefore, although the statistical significance of Flowgorithm’s impact on
problem-solving abilities was not established, the descriptive assessment indicated a “medium”
level of influence.

The results showed that the use of a Flowgorithm in mathematics learning significantly
influenced the CT abilities of grade VIII MTs students. However, it did not significantly affect
their ability to solve mathematical problems. Although it did not significantly improve problem-
solving abilities, this study still provides valuable insights into integrating programming activities

Computational Thinking Skill and Mathematics Problem Solving using Flowgorithm …

 Vol. 12, No. 1, June 2026 M/1447 H 83

into mathematics learning. Furthermore, the research findings are elaborated through in-depth
analysis, interpretations based on relevant theories, and comparisons with previous studies to
identify consistencies and differences.

The significant increase in CT ability in the experimental group demonstrates the
effectiveness of using Flowgorithm in supporting mathematics learning. The average CT ability

score in classes that integrated Flowgorithm in mathematics learning (𝑀 = 104.50) was higher

than the average CT ability score in mathematics classes that did not use Flowgorithm (𝑀 =
83.57). The large effect size (𝜂𝜌2 = 0.179) falls into the “large” category. The results of the
multivariate post hoc test, as shown in Table 5, yielded an F value of 6.523 and a significance

value of 𝜌 = 0.016, which indicates a significant difference in students’ CT ability between
mathematics classes that used Flowgorithm and those that did not. These results can be
attributed to the fact that integrating Flowgorithm facilitates students’ understanding of
concepts in a more structured and systematic manner through an interactive visual approach.
This allows key aspects of CT, such as decomposition, abstraction, pattern recognition, and
algorithms, to develop effectively. This finding is further reinforced by the results shown in
Table 2, which indicate that all aspects of CT ability improved in the experimental and control
groups. However, the increase in CT ability in the control group was lower and less consistent.
This suggests that providing students with opportunities to solve mathematical problems using
Flowgorithm effectively strengthens their CT ability, as they can directly practice CT concepts
(basic sequences, loops, iterations, conditionals, functions, and variables) as tools for solving
mathematical problems

By engaging in mathematical problem-solving activities using Flowgorithm, students are
exposed to various elements that contribute to CT development, such as task contextualization,
collaborative learning, and scaffolding in programming tasks (Sue Sentance & Csizmadia, 2016).
Students also learn to recognize patterns, decompose problems, abstract information, and
construct algorithms to solve mathematical problems (Miller, 2019). Flowgorithm allows
students to construct algorithms more effectively than visual or text-based programming
environments (Gajewski & Smyrnova-Trybulska, 2018). In contrast, students in the control class
did not engage in problem-solving activities using Flowgorithm as an information-processing
tool. This makes it more difficult for students to develop CT skills and solve problems
effectively (Veerasamy et al., 2018). Furthermore, the absence of Flowgorithm-based problem-
solving activities limits students’ opportunities to enhance their metacognitive skills (Abdullah
et al., 2017).

The findings of this study align with previous research, which indicates that integrating
programming activities into mathematics learning can enhance students’ CT abilities (Chan et
al., 2022; S Sentance & Csizmadia, 2017). Various programming applications have been
employed in prior studies, including Scratch (Maraza-Quispe et al., 2021; Park & Shin, 2022;
Rodríguez-Martínez et al., 2020), MateFun (Cameto et al., 2019; Carboni et al., 2018), Visual
Block Editor (Iwamoto & Matsumoto, 2019), virtual robots (Yuana et al., 2015), and Code.org
(Oluk & Çakır, 2021). Regarding mathematics learning in junior high schools, programming
integration is predominantly characterized by visual or block-based programming approaches
(Karaliopoulou et al., 2018; Ye et al., 2023; Yi & Lee, 2018). The primary distinction between
this study and previous research lies in the use of Flowgorithm, which emphasizes the transition
from visual to text-based programming. This approach better prepares students for text-based
programming environments, as proposed by Weintrop and Wilensky (2017). Thus, this study’s
findings complement previous research by demonstrating that the integration of hybrid
programming applications, such as Flowgorithm, in mathematics learning can significantly
enhance the CT abilities of junior high school students, similar to the effects observed with
visual-based programming. Moreover, this study provides additional insights into the

I Made Suarsana, Tatang H, Elah N, Didi S, Irianto, Al Jupri, Asep Bayu D N, Zulkaidah N A

84 Vol. 12, No. 1, June 2026 M/1447 H

effectiveness of programming integration in mathematics learning in regular and formal schools
with strong Islamic characteristics.

Different findings emerged from further tests on the aspect of problem-solving ability.
Although the average problem-solving ability score in classes that integrated Flowgorithm into

mathematics learning (𝑀 = 27.00) was higher than in mathematics classes that did not use

Flowgorithm (𝑀 = 22.857). The effect size (𝜂𝜌2 = 0.069) reached the “medium” category,
and the MANCOVA post hoc test results yielded an F value of 2.219 and a significance level

of 𝜌 = 0.147. This indicates no significant difference in students’ mathematical problem-
solving abilities between classes that used Flowgorithm and those that did not. As shown in
Table 2, scores increased across all problem-solving indicators in both the control and
experimental groups. However, the improvements were relatively small. For example, in the
indicator “Determining the points passed by the line if the gradient is known,” scores only increased from
0.5 to 2.5, suggesting that students struggle with questions requiring high-level thinking skills.
This finding is not consistent with the results of previous studies. Robins et al. (2003), Ye et al.
(2023), Costa et al. (2017), and Spencer et al. (2023)found that programming activities in
mathematics learning have a significant effect on students’ mathematical problem-solving
abilities. The discrepancy in findings is likely due to differences in the complexity of the material
addressed in the studies. While the present study focused on relatively simple material, Spencer
et al. (2023) utilized more complex problem-solving tasks.

Although no significant effect was found, the results of this study demonstrated that
using flow Algorithms in mathematics learning did not produce any negative impact. The effect

size of using flow algorithms on problem-solving ability (𝜂𝜌2 = 0.069) falls within the
moderate category. While a positive effect was observed, it did not reach statistical significance.
Another factor worth considering is analyzing the percentage of respondents based on the
answer criteria using the CRI, as shown in Table 3. In the experimental group, 23.75% of
students answered correctly with high confidence, compared to only 12.50% in the control
group. Additionally, Table 3 indicates that the experimental group exhibited fewer
misconceptions (28.75%) than the control group (30.36%). These findings suggest that, despite
the lack of statistical significance, using the Flowgorithm in the experimental group supported
a deeper understanding of mathematical concepts and helped reduce misconceptions.
Mathematical problem-solving activities using Flowgorithm provide a dynamic and interactive
learning environment, allowing students to apply mathematical concepts more practically
(Grover et al., 2015). Moreover, students can visualize abstract mathematical ideas, experiment
with different solutions, and receive immediate feedback, which fosters a deeper understanding
of the material (Witherspoon et al., 2017).

Based on the findings above, the Flowgorithm did not produce any negative effects;
instead, it provided the advantage of introducing the concept of computational thinking (CT)
earlier. This finding creates opportunities for a cross-disciplinary approach integrating CT
concepts with mathematics learning. Training and dissemination of CT integration in
mathematics education are necessary to ensure that mathematics teachers develop their CT skills
and ability to integrate CT into their teaching practices. This is essential because the
responsibility for fostering students’ CT skills should not rest solely with informatics teachers.
Integrating programming activities into mathematics learning can help students better
understand mathematical logic and algorithms. Teachers can utilize Flowgorithm to create more
interactive learning environments and reduce the risk of misconceptions. Education
policymakers should consider integrating programming activities into the mathematics
curriculum as a strategic effort to develop 21st-century skills such as computational thinking.

Further research is needed to compare various programming approaches, block-based,
text-based, or hybrid, to identify which form is most suitable for integrating into junior high

Computational Thinking Skill and Mathematics Problem Solving using Flowgorithm …

 Vol. 12, No. 1, June 2026 M/1447 H 85

school mathematics learning. Such research will provide valuable insights into the strengths and
weaknesses of each programming approach. Additionally, future studies should explore the
effects of CT integration on other mathematical abilities, such as reasoning, communication,
and mathematical connections.

CONCLUSION

The effect of integrating programming activities in mathematics learning in MTs
through Flowgorithm was examined. The findings showed a significant difference in the impact
of the Flowgorithm on CT abilities and students’ mathematical problem-solving abilities after
controlling for pre-test covariates. A significant difference was observed in the influence of the
Flowgorithm on CT abilities, whereas no significant impact was observed on mathematical
problem-solving abilities. Furthermore, no negative effects were identified from the utilization
of Flowgorithm. The effect size was positive and classified as “large.” The explicit introduction
of CT concepts through learning and providing ample opportunities for students in
mathematical problem-solving using CT concepts successfully empowered students’
computational thinking optimally.

ACKNOWLEDGMENT
The authors gratefully acknowledge the financial support provided by the Indonesia
Endowment Fund for Education (LPDP), Ministry of Finance, Republic of Indonesia, which
made this research possible.

BIBLIOGRAPHY
Abdullah, A. H., Rahman, S. N. S. A., & Hamzah, M. H. (2017). Metacognitive Skills of

Malaysian Students in Non-Routine Mathematical Problem Solving. Bolema Boletim De
Educação Matemática, 31(57), 310–322. https://doi.org/10.1590/1980-4415v31n57a15

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the
development of computational thinking. In Proceedings of the 2012 annual meeting of the
American educational research association, 1, 25. Retrieved from
https://scratched.gse.harvard.edu/ct/files/AERA2012.pdf

Cameto, G., Carboni, A., Koleszar, V., Méndez, M., Tejera, G., Viera, M., & Wagner, J. (2019).
Using functional programming to promote math learning. Proceedings - 14th Latin American
Conference on Learning Technologies, LACLO 2019, 306–313.
https://doi.org/10.1109/LACLO49268.2019.00059

Carboni, A., Koleszar, V., Tejera, G., Viera, M., & Wagner, J. (2018). MateFun: Functional
Programming and Math with Adolescents. Proceedings - 2018 44th Latin American Computing
Conference, CLEI 2018, 849–858. https://doi.org/10.1109/CLEI.2018.00106

Chan, S. W., Looi, C.-K., Ho, W. K., & Kim, M. S. (2022). Tools and Approaches for Integrating
Computational Thinking and Mathematics: A Scoping Review of Current Empirical
Studies. Journal of Educational Computing Research.
https://doi.org/10.1177/07356331221098793

Chiang, F. K., Zhang, Y., Zhu, D., Shang, X., & Jiang, Z. (2022). The influence of online STEM
education camps on students’ self-efficacy, computational thinking, and task value. Journal
of science education and technology, 31(4), 461-472. https://doi.org/10.1007/s10956-022-
09967-y

Costa, E. J. F., Campos, L. M. R. S., & Guerrero, D. D. S. (2017). Computational thinking in
mathematics education: A joint approach to encourage problem-solving ability. Proceedings
- Frontiers in Education Conference, FIE, 2017-Octob, 1–8.
https://doi.org/10.1109/FIE.2017.8190655

I Made Suarsana, Tatang H, Elah N, Didi S, Irianto, Al Jupri, Asep Bayu D N, Zulkaidah N A

86 Vol. 12, No. 1, June 2026 M/1447 H

Gajewski, R. R., and Smyrnova-Trybulska, E. (2018). Algorithms, programming, flowcharts and
flowgorithm. E-Learning and Smart Learning Environment for the Preparation of New Generation
Specialists, 393–408. Retrieved from http://www.studio-noa.pl/ig/pub/us/E-l-10/10-
393.pdf

Gignac, G. E., & Szodorai, E. T. (2016). Effect size guidelines for individual differences
researchers. Personality and Individual Differences, 102, 74–78.
https://doi.org/https://doi.org/10.1016/j.paid.2016.06.069

Goldenberg, E. P., & Carter, C. J. (2021). Programming as a language for young children to
express and explore mathematics in school. British Journal of Educational Technology, 52(3),
969-985. https://doi.org/10.1111/bjet.13080

Grover, S., Pea, R., & Cooper, S. (2015). Designing for deeper learning in a blended computer
science course for middle school students. Computer Science Education, 25(2), 199–237.
https://doi.org/10.1080/08993408.2015.1033142

Haseski, H. İ., Ilic, U., & Tugtekin, U. (2018). Defining a New 21st Century Skill-Computational
Thinking: Concepts and Trends. International Education Studies.
https://doi.org/10.5539/ies.v11n4p29

Ho, W. K., Looi, C. K., Huang, W., Seow, P., & Wu, L. (2021). Computational thinking in
mathematics: To be or not to be, that is the question. In T. L. Toh & L. H. Santos (Eds.),
In Mathematics—Connection and beyond: Yearbook 2020 association of mathematics educators (pp.
205-234). World Scientific. https://doi.org/10.1142/9789811236983_0011

Hoyles, C., & Noss, R. (2015). A Computational Lens on Design Research. ZDM, 47, 1039–
1045. https://doi.org/10.1007/s11858-015-0731-2

Hooshyar, D., Ahmad, R. B., Yousefi, M., Yusop, F. D., & Horng, S. J. (2015). A flowchart‐

based intelligent tutoring system for improving problem‐solving skills of novice
programmers. Journal of computer assisted learning, 31(4), 345-361.
https://doi.org/10.1111/jcal.12099

Irawan, E., Rosjanuardi, R., and Prabawanto, S. (2024). Research trends of computational
thinking in mathematics learning: A bibliometric analysis from 2009 to 2023. Eurasia Journal
of Mathematics, Science and Technology Education, 20(3), em2417.
https://doi.org/https://doi.org/10.29333/ejmste/14343

Iwamoto, T., & Matsumoto, S. (2019). Development of Web-Based Programming Learning
Support System with Graph Drawing of Mathematics as a Learning Task. Proceedings - 2019
8th International Congress on Advanced Applied Informatics, IIAI-AAI 2019, 302–305.
https://doi.org/10.1109/IIAI-AAI.2019.00067

Karaliopoulou, M., Apostolakis, I., & Kanidis, E. (2018). Perceptions of Informatics Teachers
Regarding the Use of Block and Text Programming Environments. European Journal of
Engineering and Technology Research. https://doi.org/10.24018/ejers.2018.0.cie.638

Maraza-Quispe, B., Sotelo-Jump, A. M., Alejandro-Oviedo, O. M., Quispe-Flores, L. M., Cari-
Mogrovejo, L. H., Fernandez-Gambarini, W. C., & Cuadros-Paz, L. E. (2021). Towards
the Development of Computational Thinking and Mathematical Logic through Scratch.
International Journal Of Advanced Computer Science And Applications, 12(2), 332–338.
https://dx.doi.org/10.14569/IJACSA.2021.0120242

Maryati, S., Lestarika, L., Idi, A., & Tri Samiha, Y. (2023). Madrasah as an Institution of Islamic
Education and Social Change. Jurnal Konseling Pendidikan Islam, 4(2), 317–326.
https://doi.org/10.32806/jkpi.v4i2.11

Miller, J. (2019). STEM education in the primary years to support mathematical thinking: using
coding to identify mathematical structures and patterns. ZDM-MATHEMATICS
EDUCATION, 51(6), 915–927. https://doi.org/10.1007/s11858-019-01096-y

Computational Thinking Skill and Mathematics Problem Solving using Flowgorithm …

 Vol. 12, No. 1, June 2026 M/1447 H 87

Miterianifa, M., Ashadi, A., Saputro, S., & Suciati, S. (2021). Higher Order Thinking Skills in the
21st Century: Critical Thinking. https://doi.org/10.4108/eai.30-11-2020.2303766

Oluk, A., and Çakır, R. (2021). The Effect of Code. Org Activities on Computational Thinking
and Algorithm Development Skills. Journal of Teacher Education and Lifelong Learning, 3(2),
32–40. https://doi.org/10.51535/tell.960476

Park, Y., & Shin, Y. (2022). Text Processing Education Using a Block-Based Programming
Language. Ieee Access. https://doi.org/10.1109/access.2022.3227765

Papadakis, S., & Kalogiannakis, M. (2019). Evaluating a course for teaching advanced
programming concepts with Scratch to preservice kindergarten teachers: A case study in
Greece. In D. Farland-Smith (Ed.), Early childhood education. IntechOpen.
https://doi.org/10.5772/intechopen.81714

Robins, A., Rountree, J., & Rountree, N. (2003). Learning and Teaching Programming: A
Review and Discussion. Computer Science Education.
https://doi.org/10.1076/csed.13.2.137.14200

Rodríguez-Martínez, J. A., González-Calero, J. A., and Sáez-López, J. M. (2020). Computational
thinking and mathematics using Scratch: an experiment with sixth-grade students. Interactive
Learning Environments, 28(3), 316–327. https://doi.org/10.1080/10494820.2019.1612448

Román-González, M., Pérez-González, J. C., & Jiménez-Fernández, C. (2017). Which cognitive
abilities underlie computational thinking? Criterion validity of the Computational Thinking
Test. Computers in human behavior, 72, 678-691. https://doi.org/10.1016/j.chb.2016.08.047

Selby, C., & Woollard, J. (2014). Refining an understanding of computational thinking.
eprints.soton.ac.uk. https://eprints.soton.ac.uk/372410

Sentance, S, & Csizmadia, A. (2017). Computing in the curriculum: Challenges and strategies
from a teacher’s perspective. In Education and Information Technologies. Springer.
https://doi.org/10.1007/s10639-016-9482-0

Sentance, S, & Csizmadia, A. (2016). Computing in the Curriculum: Challenges and Strategies
From a Teacher’s Perspective. Education and Information Technologies, 22(2), 469–495.
https://doi.org/10.1007/s10639-016-9482-0

Seehorn, D., Carey, S., Fuschetto, B., Lee, I., Moix, D., O'Grady-Cunniff, D., & Verno, A.
(2011). CSTA K--12 Computer Science Standards: Revised 2011. ACM.

Spencer, D., Mark, J., Reed, K., Goldenberg, P., Coleman, K., Chiappinelli, K., and Kolar, Z.
(2023). Using Programming to Express Mathematical Ideas. Mathematics Teacher: Learning
and Teaching PK-12, 116(5), 322–329.
https://doi.org/https://doi.org/10.5951/MTLT.2022.0354

Stephen, J. S., & Rockinson-Szapkiw, A. J. (2021). A high-impact practice for online students:
the use of a first-semester seminar course to promote self-regulation, self-direction, online
learning self-efficacy. Smart Learning Environments, 8(1), 6.
https://doi.org/https://doi.org/10.1186/s40561-021-00151-0

Tsarava, K., Moeller, K., Román-González, M., Golle, J., Leifheit, L., Butz, M. V., & Ninaus,
M. (2022). A cognitive definition of computational thinking in primary education.
Computers & Education, 179, 104425. https://doi.org/10.1016/j.compedu.2021.104425

Varela, C., Rebollar, C., Garcia, O., Bravo, E., & Bilbao, J. (2019). Skills in computational
thinking of engineering students of the first school year. HELIYON, 5(11).
https://doi.org/10.1016/j.heliyon.2019.e02820

Veerasamy, A. K., D’Souza, D., Lindén, R., & Laakso, M. (2018). Relationship Between

Perceived Problem‐solving Skills and Academic Performance of Novice Learners in
Introductory Programming Courses. Journal of Computer Assisted Learning, 35(2), 246–255.
https://doi.org/10.1111/jcal.12326

I Made Suarsana, Tatang H, Elah N, Didi S, Irianto, Al Jupri, Asep Bayu D N, Zulkaidah N A

88 Vol. 12, No. 1, June 2026 M/1447 H

Weintrop, D. (2015). Comparing Text-Based, Blocks-Based, and Hybrid Blocks/Text Programming Tools.
https://doi.org/10.1145/2787622.2787752

Weintrop, D., & Wilensky, U. (2017). Comparing block-based and text-based programming in
high school computer science classrooms. ACM Transactions on Computing Education
(TOCE), 18(1), 1–25. https://doi.org/https://doi.org/10.1145/3089799

Witherspoon, E. B., Higashi, R. M., Schunn, C. D., Baehr, E. C., & Shoop, R. (2017).
Developing Computational Thinking through a Virtual Robotics Programming
Curriculum. ACM Transactions on Computing Education, 18(1).
https://doi.org/10.1145/3104982

Xu, Z., Ritzhaupt, A. D., Tian, F., & Umapathy, K. (2019). Block-based versus text-based
programming environments on novice student learning outcomes: a meta-analysis study.
Computer Science Education, 29(2–3), 177–204.
https://doi.org/10.1080/08993408.2019.1565233

Yadav, A., Gretter, S., Hambrusch, S., & Sands, P. (2016). Expanding computer science
education in schools: understanding teacher experiences and challenges. Computer Science
Education, 26(4), 235–254. https://doi.org/10.1080/08993408.2016.1257418

Ye, H., Liang, B., Ng, O. L., & Chai, C. S. (2023). Integration of computational thinking in K-
12 mathematics education: A systematic review on CT-based mathematics instruction and
student learning. International Journal of STEM Education, 10(1), 3.
https://doi.org/10.1186/s40594-023-00396-w

Ye, H., Ng, O.-L., & Cui, Z. (2023). Conceptualizing Flexibility in Programming-Based
Mathematical Problem-Solving. Journal of Educational Computing Research.
https://doi.org/10.1177/07356331231209773

Yi, S., & Lee, Y.-J. (2018). An Educational System Design to Support Learning Transfer From
Block-Based Programming Language to Text-Based Programming Language. International
Journal on Advanced Science Engineering and Information Technology.
https://doi.org/10.18517/ijaseit.8.4-2.5735

Yuana, R. A., Faisal, M., Pangestu, D., & Putri, Y. R. L. (2015). Math thematic learning through
the introduction of basic science-based programming games virtual robot for high school
students. Advanced Science Letters, 21(7), 2235–2238. https://doi.org/10.1166/asl.2015.6318

Zeng, Y., Yang, W., and Bautista, A. (2023). Teaching programming and computational thinking
in early childhood education: a case study of content knowledge and pedagogical
knowledge. Frontiers in Psychology, 14, 1252718.
https://doi.org/10.3389/fpsyg.2023.1252718

