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ABSTRACT 
The integration of computational thinking into mathematics learning is increasingly important in 
preparing students for problem-solving in the digital era, and visual programming tools such as 
Flowgorithm offer potential pedagogical support. This study analyzes the effect of Flowgorithm-assisted 
instruction on students’ computational thinking skills and mathematical problem-solving abilities. A 
quasi-experimental pretest–posttest control group design was employed and implemented in two phases: 
a programming phase and a mathematics learning phase. The population consisted of all eighth-grade 
students at Madrasah Tsanawiyah in Bali Province, Indonesia, from which 34 students were selected 
using cluster random sampling (20 in the experimental group and 14 in the control group). Data on 
computational thinking and mathematical problem-solving abilities were collected using achievement 
tests and analyzed using MANCOVA, followed by post hoc tests, with effect sizes reported using partial 
eta squared. The findings reveal significant differences between the experimental and control groups, 
with post hoc analysis indicating that Flowgorithm-assisted mathematics learning significantly improved 
students’ computational thinking skills, while no significant difference was found in mathematical 
problem-solving abilities. Despite a non-significant effect on problem-solving, the integration of 
Flowgorithm showed no negative impact, suggesting that Flowgorithm-assisted instruction can be a 
viable approach for embedding computational thinking concepts into mathematics curricula and 
instructional practices. 
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INTRODUCTION  
The significance of computational thinking (CT) abilities in 21st-century life skills has been 
widely recognized (Haseski et al., 2018). CT is a skill essential for individuals to succeed in global 
competition; therefore, efforts should be made to integrate CT into schools (Miterianifa et al., 
2021). Thus, the CT concept, initially developed in computer science, needs to be adapted and 
expanded to the field of education, especially learning in schools. Initially, Jeannette Wing 
defined CT as a thinking process for formulating problems and solutions, representing them 
effectively through information processing agents (Varela et al., 2019).   After that, the definition 
of CT developed rapidly and tended to diverge. A unique CT framework for mathematics 
learning was revealed by Weintrop et al. (2015), who divided CT into four categories: data 
practices, modeling and simulation practices, computational problem-solving practices, and 
systems thinking practices. Concerning the CT capability aspect, Selby and Woollard (2014) and 
Hoyles and Noss (2015) break it down into four aspects, also known as PRADA (pattern 
recognition, abstraction, decomposition, algorithm). The current research trend in CT 
integration for mathematics teaching utilizes the PRADA framework (Irawan et al., 2024). 
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Other trends in CT research within mathematics education were further unveiled by Ye 
et al. (2023) through a systematic literature review. Their findings indicated that a common 
intervention to foster CT in math education is the inclusion of programming activities. The 
current potential for integrating programming tasks into school curricula, particularly within 
junior high school mathematics education, presents a significant opportunity to enhance CT 
skills and mathematical performance (Chan et al., 2022), particularly in the context of problem-
solving (Robins et al., 2003; Ye et al., 2023). Prior researchers had undertaken various studies 
on incorporating programming into math education. Cameto et al. (2019), Carboni et al. (2018), 
and Zeng et al. (2023) integrated the MateFun programming language into function learning in 
junior high schools, noting no substantial difference in math abilities compared to traditional 
methods, yet students gained fundamental programming knowledge. MateFun, a text-based 
language utilizing function commands as primary computing units, was employed. Yuana et al. 
(2015) demonstrated that blending science-based programming with virtual robots in 10th-grade 
math classes facilitates the comprehension of math concepts while introducing programming 
principles. Park and Manley (2024) observed that text-based programming integration enhanced 
11th-grade students’ grasp of mathematical concepts. Iwamoto and Matsumoto (2019) found 
that utilizing a visual block editor in junior high math education significantly improved math 
learning outcomes. Furthermore, Spencer et al. (2023) discovered that integrating visual 
programming languages into elementary math education could enhance student engagement 
with mathematical concepts, support problem-solving and reasoning skills, and encourage 
mathematical discourse. 

Overall, previous research demonstrated that integrating programming into 
mathematics education, whether visual-based or text-based, did not negatively influence it. 
Furthermore, a significant benefit was the early introduction of computational thinking 
concepts. Literature reviews indicated that research on programming integration in junior high 
school mathematics had predominantly involved visual or block-based programming 
(Karaliopoulou et al., 2018; Ye et al., 2023; Yi & Lee, 2018), such as Scratch (Park & Shin, 2022). 
Visual programming tools like Scratch appealed to school-aged students because they made 
learning enjoyable; however, challenges can arise when transitioning from visual to text-based 
coding (Yadav et al., 2016; Papadakis & Kalogiannakis, 2019). Text-based programming 
languages were preferred for developing coding skills, although they were often considered 
complex for students at the school level (Weintrop & Wilensky, 2017). Flowgorithm, a user-
friendly graphical flowchart-based programming language for beginners (Gajewski & 
Smyrnova-Trybulska, 2018), served as a potential solution for bridging the gaps between visual 
and text-based programming (Xu et al., 2019). Students could focus on programming concepts 
through flowcharts, facilitating a smoother transition to actual coding (Ho et al., 2021). 
Additionally, flowcharts created could be directly converted into over 18 languages, including 
C#, C++, Java, JavaScript, Lua, Perl, Python, Ruby, Swift, Visual Basic .NET, and VBA. 

The integration of Flowgorithm, a combination of block-based and text-based 
programming, in mathematics learning has been an area of research that has received limited 
attention. Studies on the effectiveness of using flowchart programming were mainly conducted 
in computer science to introduce programming concepts and enhance problem-solving abilities 
(Hooshyar et al., 2015). Flowgorithm has been demonstrated as an effective tool in 
programming classes for presenting algorithms and their results (Gajewski & Smyrnova-
Trybulska, 2018), clearly distinguishing between programming (creating algorithms) and coding 
(translating algorithms into specific programming languages). To bridge this gap, the present 
study aimed to explore the integration of Flowgorithm into mathematics learning within the 
unique context of Madrasah Tsanawiyah (MTs), investigating its potential impact on both 
computational thinking and mathematical problem-solving abilities, areas that had received 
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limited attention in prior research. Consequently, a quasi-experimental study was carried out 
with a population of grade 8 students, specifically targeting students from MTs in Bali Province. 
These MTs are formal schools that focus on Islamic education, equivalent to junior high level, 
resembling public schools with Islamic characteristics (Maryati et al., 2023). No previous studies 
have investigated the integration of programming into mathematics learning at Islamic boarding 
schools. Hence, the novelty of this research lies in integrating hybrid programming into 
mathematics education and involving research subjects from formal schools with Islamic 
characteristics. Another novel aspect examined the influence of programming integration on 
mathematical problem-solving abilities. Prior research had only revealed the impact of 
programming activities on general mathematics performance, including understanding 
mathematical concepts and processes, interest in mathematics (Goldenberg & Carter, 2021), 
and self-efficacy (Chiang et al., 2022). Despite indications from Kuen (2011) that programming 
activities had the potential to develop problem-solving skills, no experimental research had 
explicitly examined the effect of programming activities on problem-solving abilities 

 
METHOD 

The research involved all grade 8 students from 36 MTs in Bali Province. Using a simple 
cluster random sampling technique, the researchers randomly selected 2 classes from the 8th-
grade population, yielding a sample of 2. These classes were from MTS Mambaus Sholihin 
Jembrana, comprising 18 students, and MTs Kalifa Nusantara, Denpasar, with 26 students in 
the 8th grade. Subsequently, randomization was conducted to assign participants to the control 
and experimental groups. Initially comprising 44 participants, there was a loss of 10 participants 
whose data had to be excluded as they did not engage fully in the research phase. Consequently, 
the research samples comprised the control group from MTs Mambaus Sholihin (14 members; 
6 males, 8 females) and the experimental group from MTs Kalifa Nusantara (20 members; 7 
males, 13 females). Neither group possessed prior knowledge or skills in programming with 
Flowgorithm. 

The research design for this study involved a quasi-experimental approach with two 
phases implemented in both the experimental and control groups. More details are presented in 
Figure 2. The first stage, the programming phase, involved acquiring fundamental knowledge 
and skills necessary for programming using Flowgorithm. This phase was administered to both 
groups, each lasting 90 minutes, totaling three sessions. The CT concepts covered in this phase 
included basic sequences, loops, iteration, conditionals, functions, and variables (Román-
González et al., 2017). These CT concepts were deemed suitable for students aged 12-14 years 
(grades 7 and 8) (Tsarava et al., 2022) and were aligned with the CT framework proposed by 
Brennan and Resnick (2012) as well as the computer science standards for grades 6-9 established 
by the Computer Science Teachers Association (Seehorn et al., 2011). 
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Computational Thinking 

Pre-test

Programming Phase

Mathematics Problem-

Solving Pre-test

Mathematics 

Phase

Computational Thinking 

Post-test & Mathematics 

Problem-Solving Pre-test

- Test adopted from Román-González et al., 2017

- consists of 14 multiple choice questions with 4 answer options, time allocation is 60 minutes

- Scope: i) basic sequences, (ii) loops, (iii) iteration, (iv) conditionals, (v) functions and (vi) variables

Introduction to Programming with Flowgorithm 

- Session 1: Basic sequences, Loops, And Iteration

- Session 2: Conditionals

- Session 3: Function and Variables

Description test 

- consists of 4 questions, time allocation is 60 minutes

- Scope: solving problems related to straight line equations and gradients.

Experimental Group: Solving mathematical problems with Flowgorithm 

- Session 1: Solving problems related to straight line equations

- Session 2: Solving problems related to straight line gradients

- Session 3: Problem solving related to relationships between lines

Experimental Group: Solving mathematical problems with paper and pencil settings

- Session 1: Solving problems related to straight line equations

- Session 2: Solving problems related to straight line gradients

- Session 3: Problem solving related to relationships between lines

A test that is equivalent to a pre-test

Score Pre-Test  CT EG

Score Pre-Test  CT CG 

Score Pre-Test MPS EG

Score Pre-Test MPS CG 

Score Pre-Test CT  EG

Score Pre-Test CT  CG 

Score Pre-Test MPS EG

Score Pre-Test MPS CG 

 
Figure 1. Research Procedure 

 

In the second phase, known as the mathematics phase, the emphasis shifted to problem-
solving tasks, with Flowgorithm used as an instructional aid. Students participated in 3 sessions 
focused on solving problems involving straight-line equations, aligning with the learning 
objectives outlined in the Indonesian curriculum. Session 1 focused on determining the gradient 
of a straight line. Session 2 involved solving problems to establish the relationship between two 
straight lines. In Session 3, students engaged in problem-solving exercises to identify the 
equation of a straight line. 

In contrast to the first phase, the second phase involved distinct treatments for the 
experimental and control groups. The experimental group utilized a Flowgorithm to tackle 
assigned tasks, whereas the control group completed the tasks without the aid of a Flowgorithm, 
relying on traditional tools like paper and pencil. Each session occurred twice a week. 

Before the programming phase, both groups underwent a pre-test to evaluate their initial 
CT skills. Similarly, before the commencement of the mathematics phase, students also took a 
pre-test to gauge their initial mathematical problem-solving abilities. All assessments conducted 
in this study lasted 60 minutes and were conducted concurrently for both groups. At the end of 
the second phase, both groups of students participated in two post-tests to assess their CT and 
mathematical problem-solving abilities. Contrasting the pre-test and post-test results will enable 
an analysis of the progress in acquiring CT concepts and mathematical problem-solving skills 
under each experimental condition. 

The study utilized two instruments: a CT test and a mathematics problem-solving test. 
The CT test, adapted from Román-González et al. (2017), comprised 14 multiple-choice items 
targeting seven computing concepts, including loops, conditionals, and simple functions, 

designed for grade 7 and 8 students. The test demonstrated validity (0.27 < 𝑟 < 0.44) and 

reliability (CCronbach’sAlpha 𝛼 = 0.793), with items arranged by increasing difficulty. 
Equivalent pre-test and post-test versions were administered online via Google Forms, differing 
only in question descriptions while maintaining consistent difficulty levels. The mathematics 
problem-solving test focused on straight-line equations and comprised four multiple-choice 
questions with four answer options. Two versions of the same test with identical structures and 
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features were administered for both the pre-test and post-test. The researcher developed the 
problem-solving ability tester and underwent validation by experts, alongside field trials that 

confirmed the validity of the items (0.378 < 𝑟 < 0.9233) and a CCronbach’sAlpha reliability of 

𝛼 = 0.760. Additionally, the test included a Certainty of Response Index (CRI) questionnaire 
to distinguish between students who misunderstood the problem and those who did not 
comprehend it (Putri et al., 2021). Students were required to indicate their confidence level in 
each response, ranging from 100% guessing to 100% certainty. 

Data analysis was performed on post-test score data with pre-test scores used as 
covariates through multivariate analysis of covariance (MANCOVA). MANCOVA was selected 
because it provided a stronger hypothesis test compared to analysis of variance (Dugard & 
Todman, 1995). The MANCOVA calculations were carried out using the IBM SPSS Statistics 
29.0.1.0 application, employing general linear model multivariate statistics with the Bonferroni 
correction. Effect size was calculated using Cohen’s formula (d) and partial eta squared statistics 

(𝜂𝑝
2). Effect size interpretation, based on Cohen’s d and partial eta squared (𝜂𝑝

2), is categorized 

as negligible (0 < 𝑑 < 0.2, 0 < 𝜂𝑝
2 < 0.01), small (0.2<d≤0.5, 0.01<𝜂𝑝

2≤0.06), medium 

(0.5<d≤0.8, 0.06<𝜂𝑝
2≤0.14), and large (d>0.8, 𝜂𝑝

2>0.14)(Gignac & Szodorai, 2016; Stephen & 

Rockinson-Szapkiw, 2021).  
 

RESULTS AND DISCUSSION 
The pre-test and post-test results for each aspect of the CT concept are displayed in 

Table 1. The optimal maximum score for each aspect of the CT Concept was 20, with 140 being 
the ideal maximum score for the entire test. The scores for each CT concept showed that the 
more complex the concept, the lower the average score. This pattern was consistent in the pre-
test and post-test for both the control and experimental groups. The average CT post-test scores 
for the control and experimental groups were 83.571 and 104.500, respectively. There was a 
descriptive increase in the CT score in each group compared to the pre-test score. Using 

Cohen’s formula, the effect size (𝑑) in the control group and experimental group were 0.489 
(small) and 0.716 (medium), respectively. The improvement observed in the experimental group 
was notably larger in quantity and quality. 

Both groups exhibited increased CT scores when analyzed based on the CT concept 
aspect. In the control group, the most significant increase in CT score was in the “loop repeat 
until” aspect, while the smallest increase was noted in the “basic direction and sequence” aspect. 
Conversely, in the experimental group, the most substantial increase in CT scores was seen in 
the “If simple conditional” aspect, with the smallest increase also occurring in the “basic 
direction and sequence” aspect. These results suggest that teaching basic CT concepts using 
Flowgorithm in Phase I could enhance students’ CT abilities. Moreover, inferential statistics are 
required to evaluate the impact of various treatments in Phase II on CT capabilities. 

 
Table 1. CT Pre-test and Post-Test Score 

CT Concept 

Control Group Experiment Group 

Pre-Test Post-Test Pre-Test Post-Test 

Mean SD Mean SD Mean SD Mean SD 

Basic directions and 
sequences 

18.571 3.631 19.286 2.673 20.000 0.000 20,000 0,000 

Loops repeat times 15.714 5.136 17.857 4.258 18.000 4.104 19,500 2,236 
Loops repeat until 11.429 8.644 15.000 6.504 13.000 6.569 17,000 4,702 

If simple conditional 9.286 6.157 11.429 6.630 11.000 7.182 16,500 4,894 
If/else complex 

conditional 
6.429 6.333 8.571 8.644 10.500 6.048 14,000 5,026 

While conditional 5.000 5.189 7.857 5.789 7.500 5.501 10,000 6,489 
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CT Concept 

Control Group Experiment Group 

Pre-Test Post-Test Pre-Test Post-Test 

Mean SD Mean SD Mean SD Mean SD 
Simple functions 2.857 4.688 3.571 4.972 6.000 5.982 7,500 6,387 

Total 69.286 31.736 83.571 26.489 86 29.629 104.500 21.392 
Cohen’s (d) 0.489 0.716 

 
The results of the pre-test and post-test assessments of problem-solving abilities in the 

straight-line equation material have been outlined in Table 2. The optimal maximum score for 
each problem-solving item was 10, with the total test score ideally reaching 40. Upon reviewing 
the scores per indicator, it became evident that many students encountered challenges when 
solving problems related to determining points on a line with a known gradient/equation. This 
pattern was consistent across the pre-test and post-test assessments for both the control group 
and experimental group. The average post-test scores for problem-solving in the control group 
and experimental group were 22.857 and 27.000, respectively. Descriptively, there was an 
increase in problem-solving ability scores in each group compared to the pre-test results. 

The effect size in the control group was d=1.022 (large), while in the experimental 
group, it was d=1.301 (large). Quantitatively, the effect size in the experimental group exceeded 
that of the control group, although both groups fell within the “large” effect size category. The 
problem-solving test scores improved in both groups for each question item, indicating that 
problem-solving activities using both Flowgorithm and traditional methods can enhance 
students’ problem-solving abilities. Inferential statistics are essential to ascertain which 
treatments can significantly impact the development of problem-solving skills. 
 

Table 2. Mathematics Problem Solving Pre-test and Post-Test Score 

Problem-Solving Indicator 

Control Group Experiment Group 

Pre-Test Post-Test Pre-Test Post-Test 

Mean SD Mean SD Mean SD Mean SD 

Determine the equation of a 

straight line if the gradient and 

the point through which it 

passes are known. 

0.714 2.673 3.571 4.972 1.500 3.663 5.500 5.104 

Determine the point through 

which a line passes if the 

gradient/equation is known 

0.714 2.673 1.429 3.631 0.500 2.236 2.500 4.443 

Determine the gradient of a line 

if the magnitude of the change 

in the horizontal and vertical 

directions is known 

7.143 4.688 10.000 0.000 6.500 4.894 9.000 3.078 

Determine the gradient 

relationship of two parallel lines 
5.714 5.136 7.857 4.258 8.000 4.104 10.000 0.000 

Total 14.286 7.559 22.857 9.139 16.500 9.333 27.000 6.569 

Cohen’s (d) 1.022 1.301 

 
The post-test instrument for assessing mathematical problem-solving abilities was also 

complemented with the CRI questionnaire. The results from the analysis, detailing accuracy and 
students’ confidence levels, are presented in Table 3. In the control group, 12.50% of 
respondents provided correct answers with a high confidence level, while 30.36% offered 
incorrect answers with high confidence. This suggests that, among the 100 respondents in the 
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control group, 13 individuals comprehended and applied the straight-line equation accurately, 
31 misunderstood the concept, and the remaining 56 were unaware of it, often resorting to 
guesses in their responses. 

Conversely, in the experimental group, 23.75% of respondents answered correctly with 
high confidence, and 28.75% answered incorrectly with high confidence. This indicates that out 
of 100 respondents in the experimental group, 24 grasped and effectively applied the concept 
in problem-solving, 29 misunderstood the concept, and 47 were unaware. The proportion of 
students exhibiting a correct understanding in the experimental group exceeded that in the 
control group, indicating that incorporating Flowgorithm in problem-solving activities 
facilitated a deeper understanding of concepts than traditional paper-and-pencil methods. 
Moreover, misconceptions among students in the experimental group were lower than in the 
control group. Utilizing flowgorithm programming in mathematical problem-solving activities 
proved to be more efficacious in mitigating misconceptions among students than conventional 
paper-and-pencil methods. 

 
Table 3. Percentage of Respondents Based on Answer Criteria 

Answer Criteria 
% Respondents 

Problem 1 Problem 2 Problem 3 Problem 4 All 

Control Group      

True Answer High CRI Value (>2.5)  21,43 0,00 7,14 21,43 12,50 
  Low CRI Value (< 2.5) 7,14 7,14 42,86 28,57 21,43 

Wrong Answer Low CRI Value (< 2.5)  35,71 50,00 28,57 28,57 35,71 
  High CRI Value (>2.5)  35,71 42,86 21,43 21,43 30,36 
Experiment Group      
True Answer High CRI Value (>2.5)  30,00 15,00 35,00 15,00 23,75 
  Low CRI Value (< 2.5) 15,00 20,00 25,00 10,00 17,5 
Wrong Answer Low CRI Value (< 2.5)  30,00 20,00 40,00 30,00 30 
  High CRI Value (>2.5)  25,00 45,00 0,00 45,00 28,75 

 
The descriptive outcomes mentioned above were subjected to significance testing for 

differences or effects using inferential statistics. Prior to conducting the MANCOVA inferential 
test, a prerequisite test was performed. In SPSS, a normality assessment was conducted on the 
residual variables of the CT post-test and mathematics problem-solving post-test using the 
Shapiro-Wilk test. The Shapiro-Wilk statistical value for the CT post-test residual variable was 
0.977 with a significance of 0.673. Similarly, for the mathematics problem-solving post-test 
residual, the Shapiro-Wilk statistical value was 0.960 with a significance of 0.244. As both 
significance values were >0.05, the sample was concluded to be drawn from a normally 
distributed population. 

Subsequently, the homogeneity of the covariance matrix was assessed using Box’s test 

as another prerequisite. The SPSS analysis indicated that Box’s M value was 2.582, 𝐹 = 0.800, 
df1=3, df2=50,117 with a significance of 0.494 > 0.05, signifying that the covariance matrix 
among groups was homogeneous. The third prerequisite involved testing the homogeneity of 
variance using Levene’s test. The SPSS computations revealed that the F statistical value for the 
post-test variable was 0.002, a significance of 0.964, and for the mathematics problem-solving 
post-test variable, the F statistical value was 0.151 with a significance of 0.700. Given that both 
significance values were >0.05, it was inferred that the two population variances were 
homogeneous. Consequently, all prerequisite tests for the MANCOVA analysis were satisfied, 
leading to the subsequent testing of hypothesis H0. 
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H0: There is no significant difference in the use of Flowgorithm on students' CT abilities 

and mathematical problem-solving skills after controlling for the pre-test covariate. 

H1: There is a significant difference in the use of Flowgorithm on students' CT abilities and 

mathematical problem-solving skills after controlling for the pre-test covariate. 

The results of the MANCOVA test conducted using SPSS Statistics 29.0.1.0 with a 
general linear multivariate model approach are presented in Table 4. 

 
Table 4. Multivariate Tests 

Effect Value F 
Hypothes

is df 
Error 

df 
Sig. 

Partial Eta 
Squared 

Group Pillai’s Trace 0.256 4.988 2.000 29.000 0.014 0.256 

Wilks’ Lambda 0.744 4.988 2.000 29.000 0.014 0.256 

Hotelling’s 
Trace 

0.344 4.988 2.000 29.000 0.014 0.256 

Roy’s Largest 
Root 

0.344 4.988 2.000 29.000 0.014 0.256 

 

The Wilks’ Lambda statistic value is 0.744, and the effect size value. 𝜂𝑝
2  is 0.256 with a 

significance of 0.014, which is less than 0.05. Therefore, it can be concluded that using 
Flowgorithm has a significant impact on both computational thinking abilities and mathematical 
problem-solving, while controlling for initial abilities. The effect size, as indicated by the 

𝜂𝑝
2  value is considered “large”. The post hoc test utilized the Benferroni test to identify specific 

differences between groups individually. The outcomes of the Benferroni post hoc test are 
detailed in Table 5. 
 

Table 5. Tests of Between-Subjects Effects 

Source 
Dependent 

Variable 

Type III 
Sum of 
Squares 

df 
Mean 
Square 

F Sig. 
Partial 

Eta 
Squared 

Group Computational 
Thinking Post-test 

425.913 1 425.913 6.523 0.01
6 

0.179 

Mathematics 
Problem Solving 
Post-test 

59.900 1 59.900 2.219 0.14
7 

0.069 

 
The results of the Tests of Between-Subjects Effects on each dependent variable 

indicated that the utilization of Flowgorithm in mathematics education had a significant impact 

on CT abilities (𝐹 = 6.523, 𝜌 = 0.016, 𝜂𝑝
2 = 0.179) but did not yield a significant effect on 

mathematical problem-solving abilities (𝐹 = 2.219, 𝜌 = 0.147, 𝜂𝜌2 = 0.069). The effect size 
of employing Flowgorithm for each dependent variable was assessed using the partial eta 
squared value as outlined in Table 1. The effect size for CT ability due to Flowgorithm 
implementation fell in the “large” category, whereas for mathematical problem-solving ability, 
it was “medium”. Therefore, although the statistical significance of Flowgorithm’s impact on 
problem-solving abilities was not established, the descriptive assessment indicated a “medium” 
level of influence. 

The results showed that the use of a Flowgorithm in mathematics learning significantly 
influenced the CT abilities of grade VIII MTs students. However, it did not significantly affect 
their ability to solve mathematical problems. Although it did not significantly improve problem-
solving abilities, this study still provides valuable insights into integrating programming activities 
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into mathematics learning. Furthermore, the research findings are elaborated through in-depth 
analysis, interpretations based on relevant theories, and comparisons with previous studies to 
identify consistencies and differences. 

The significant increase in CT ability in the experimental group demonstrates the 
effectiveness of using Flowgorithm in supporting mathematics learning. The average CT ability 

score in classes that integrated Flowgorithm in mathematics learning (𝑀 = 104.50) was higher 

than the average CT ability score in mathematics classes that did not use Flowgorithm (𝑀 =
83.57). The large effect size (𝜂𝜌2 = 0.179) falls into the “large” category. The results of the 
multivariate post hoc test, as shown in Table 5, yielded an F value of 6.523 and a significance 

value of 𝜌 = 0.016, which indicates a significant difference in students’ CT ability between 
mathematics classes that used Flowgorithm and those that did not. These results can be 
attributed to the fact that integrating Flowgorithm facilitates students’ understanding of 
concepts in a more structured and systematic manner through an interactive visual approach. 
This allows key aspects of CT, such as decomposition, abstraction, pattern recognition, and 
algorithms, to develop effectively. This finding is further reinforced by the results shown in 
Table 2, which indicate that all aspects of CT ability improved in the experimental and control 
groups. However, the increase in CT ability in the control group was lower and less consistent. 
This suggests that providing students with opportunities to solve mathematical problems using 
Flowgorithm effectively strengthens their CT ability, as they can directly practice CT concepts 
(basic sequences, loops, iterations, conditionals, functions, and variables) as tools for solving 
mathematical problems 

By engaging in mathematical problem-solving activities using Flowgorithm, students are 
exposed to various elements that contribute to CT development, such as task contextualization, 
collaborative learning, and scaffolding in programming tasks (Sue Sentance & Csizmadia, 2016). 
Students also learn to recognize patterns, decompose problems, abstract information, and 
construct algorithms to solve mathematical problems (Miller, 2019). Flowgorithm allows 
students to construct algorithms more effectively than visual or text-based programming 
environments (Gajewski & Smyrnova-Trybulska, 2018). In contrast, students in the control class 
did not engage in problem-solving activities using Flowgorithm as an information-processing 
tool. This makes it more difficult for students to develop CT skills and solve problems 
effectively (Veerasamy et al., 2018). Furthermore, the absence of Flowgorithm-based problem-
solving activities limits students’ opportunities to enhance their metacognitive skills (Abdullah 
et al., 2017). 

The findings of this study align with previous research, which indicates that integrating 
programming activities into mathematics learning can enhance students’ CT abilities (Chan et 
al., 2022; S Sentance & Csizmadia, 2017). Various programming applications have been 
employed in prior studies, including Scratch (Maraza-Quispe et al., 2021; Park & Shin, 2022; 
Rodríguez-Martínez et al., 2020), MateFun (Cameto et al., 2019; Carboni et al., 2018), Visual 
Block Editor (Iwamoto & Matsumoto, 2019), virtual robots (Yuana et al., 2015), and Code.org 
(Oluk & Çakır, 2021). Regarding mathematics learning in junior high schools, programming 
integration is predominantly characterized by visual or block-based programming approaches 
(Karaliopoulou et al., 2018; Ye et al., 2023; Yi & Lee, 2018). The primary distinction between 
this study and previous research lies in the use of Flowgorithm, which emphasizes the transition 
from visual to text-based programming. This approach better prepares students for text-based 
programming environments, as proposed by Weintrop and Wilensky (2017). Thus, this study’s 
findings complement previous research by demonstrating that the integration of hybrid 
programming applications, such as Flowgorithm, in mathematics learning can significantly 
enhance the CT abilities of junior high school students, similar to the effects observed with 
visual-based programming. Moreover, this study provides additional insights into the 
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effectiveness of programming integration in mathematics learning in regular and formal schools 
with strong Islamic characteristics. 

Different findings emerged from further tests on the aspect of problem-solving ability. 
Although the average problem-solving ability score in classes that integrated Flowgorithm into 

mathematics learning (𝑀 = 27.00) was higher than in mathematics classes that did not use 

Flowgorithm (𝑀 = 22.857). The effect size (𝜂𝜌2 = 0.069) reached the “medium” category, 
and the MANCOVA post hoc test results yielded an F value of 2.219 and a significance level 

of 𝜌 = 0.147. This indicates no significant difference in students’ mathematical problem-
solving abilities between classes that used Flowgorithm and those that did not. As shown in 
Table 2, scores increased across all problem-solving indicators in both the control and 
experimental groups. However, the improvements were relatively small. For example, in the 
indicator “Determining the points passed by the line if the gradient is known,” scores only increased from 
0.5 to 2.5, suggesting that students struggle with questions requiring high-level thinking skills. 
This finding is not consistent with the results of previous studies. Robins et al. (2003), Ye et al. 
(2023), Costa et al. (2017), and Spencer et al. (2023)found that programming activities in 
mathematics learning have a significant effect on students’ mathematical problem-solving 
abilities. The discrepancy in findings is likely due to differences in the complexity of the material 
addressed in the studies. While the present study focused on relatively simple material, Spencer 
et al. (2023) utilized more complex problem-solving tasks. 

Although no significant effect was found, the results of this study demonstrated that 
using flow Algorithms in mathematics learning did not produce any negative impact. The effect 

size of using flow algorithms on problem-solving ability (𝜂𝜌2 = 0.069) falls within the 
moderate category. While a positive effect was observed, it did not reach statistical significance. 
Another factor worth considering is analyzing the percentage of respondents based on the 
answer criteria using the CRI, as shown in Table 3. In the experimental group, 23.75% of 
students answered correctly with high confidence, compared to only 12.50% in the control 
group. Additionally, Table 3 indicates that the experimental group exhibited fewer 
misconceptions (28.75%) than the control group (30.36%). These findings suggest that, despite 
the lack of statistical significance, using the Flowgorithm in the experimental group supported 
a deeper understanding of mathematical concepts and helped reduce misconceptions. 
Mathematical problem-solving activities using Flowgorithm provide a dynamic and interactive 
learning environment, allowing students to apply mathematical concepts more practically 
(Grover et al., 2015). Moreover, students can visualize abstract mathematical ideas, experiment 
with different solutions, and receive immediate feedback, which fosters a deeper understanding 
of the material (Witherspoon et al., 2017). 

Based on the findings above, the Flowgorithm did not produce any negative effects; 
instead, it provided the advantage of introducing the concept of computational thinking (CT) 
earlier. This finding creates opportunities for a cross-disciplinary approach integrating CT 
concepts with mathematics learning. Training and dissemination of CT integration in 
mathematics education are necessary to ensure that mathematics teachers develop their CT skills 
and ability to integrate CT into their teaching practices. This is essential because the 
responsibility for fostering students’ CT skills should not rest solely with informatics teachers. 
Integrating programming activities into mathematics learning can help students better 
understand mathematical logic and algorithms. Teachers can utilize Flowgorithm to create more 
interactive learning environments and reduce the risk of misconceptions. Education 
policymakers should consider integrating programming activities into the mathematics 
curriculum as a strategic effort to develop 21st-century skills such as computational thinking. 

Further research is needed to compare various programming approaches, block-based, 
text-based, or hybrid, to identify which form is most suitable for integrating into junior high 
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school mathematics learning. Such research will provide valuable insights into the strengths and 
weaknesses of each programming approach. Additionally, future studies should explore the 
effects of CT integration on other mathematical abilities, such as reasoning, communication, 
and mathematical connections. 
 
CONCLUSION  

The effect of integrating programming activities in mathematics learning in MTs 
through Flowgorithm was examined. The findings showed a significant difference in the impact 
of the Flowgorithm on CT abilities and students’ mathematical problem-solving abilities after 
controlling for pre-test covariates. A significant difference was observed in the influence of the 
Flowgorithm on CT abilities, whereas no significant impact was observed on mathematical 
problem-solving abilities. Furthermore, no negative effects were identified from the utilization 
of Flowgorithm. The effect size was positive and classified as “large.” The explicit introduction 
of CT concepts through learning and providing ample opportunities for students in 
mathematical problem-solving using CT concepts successfully empowered students’ 
computational thinking optimally. 
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