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Abstract
The phenomenon of relaxation and oscillation is a common event that is often encountered. Both of
these properties can occur in viscoelastic materials even though they do not occur simultaneously.
Because the characteristics of viscoelastic materials are difficult to describe using classical-order
differential equations, in this study, fractional-order differential equations were used to model each
of the relaxation and oscillation phenomena in viscoelastic materials with the help of Laplace
transform as a solution method . The solution obtained characterizes the phenomenon of memory
effect as well as viscoelastic materials in general. In addition to this phenomenon, several other
variables were also found to be the influence of the related material motion dynamics.
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Introduction
In physics, relaxation is a phenomenon in which a system that has been disturbed returns to

equilibrium [1]. This phenomenon is common in elastic materials. Another phenomenon is oscillation
which is defined as the back and forth motion of an object that occurs periodically or the repeated
motion of the object at a fixed time interval [2]. In contrast to relaxation, oscillations are not only
found in mechanical systems such as springs, but also in dynamic systems. There are materials that
can experience relaxation and oscillation phenomena known as viscoelastic materials. Besides being
able to experience two different phenomena, this material also has physical behavior such as elastic
or viscous material [3].

Figure 1.1 Illustration of a system with elastic and viscous components [4].

The oscillatory movement of a viscoelastic material is influenced by several things, including the
nature of the material, the type of material, and the mass. However, there are some behaviors of
viscoelastic materials that are quite difficult to describe through equations with an integer order,
namely the memory effect behavior which is characterized by the phenomenon of slowed relaxation,
or damped oscillations. This behavior only occurs in soft viscoelastic materials such as polymers,
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biopolymers, metals at very high temperatures, and bituminous materials. Because this behavior is
difficult to describe using an integer-order derivative equation model, a fractional-order derivative
equation model is used to describe this behavior [5].

Fractional-order differential equations commonly used today include; (i) Grünwald Letnikov
Type, (ii) Riemann-Liouville Type, and (iii) Caputo Type [6]. The Riemann-Liouville type fractional
order differential requires that the initial conditions are fractional order, so it has a physical meaning
that is quite difficult to explain [6]. Meanwhile, the initial conditions specified for the Caputo-type
fractional-order differential are not different from the integer-order differentials, so they can be
interpreted physically. Fractional order differential equations are commonly used to accurately
model systems that require accurate damping modeling [7]. In addition, Caputo fractional derivative
is useful in modeling physical phenomena that have memory [8]. Based on these reasons, the
Caputo fractional order derivative is considered more suitable for modeling and solving this
problems.

The use of Caputo fractional derivative has been applied in solving other physical problems,
including in electric circuits [9], and the semi-infinite cooling process by radiation [10]. The solution
of the relaxation and oscillation model using the Caputo fractional derivative has previously been
studied by Chen [5]. In this study, a mathematical model of relaxation and oscillation movements is
described using the Caputo type fractional differential. The model used has a correspondence with
the Maxwell model with modifications to Newton's fluid components which are replaced with soft
viscoelastic components to cause memory effect behavior on the system. Then, the model is solved
analytically using the Laplace transform method, which this analytical solution was not described in
detail in Chen [5]. Furthermore, the relaxation and oscillation movement models were simulated to
study the effect of parameters for the dynamics of relaxation and oscillation motion in viscoelastic
materials.

Methods
1. Caputo Fractional Derivative

The Caputo type fractional derivative is defined as follows [11] :
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where � is a fractional order, and Γ is a gamma function. The initial condition value of the
Caputo type which is not different from the value of the ordinary differential initial condition
makes this type a distinct advantage compared to the Riemann-Liouville type whose initial
condition value has a fractional order, so that the initial condition value can have a clear physical
interpretation.

In solving Caputo fractional differential equations, the following property is used:
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2. Relaxation and Oscillation Model
2.1.Standard Relaxation Model

The standard relaxation equation is defined as follows [5]:
��
�� + �� = � � , (3)

where � represents the strain rate, � = �
η
, � is the modulo of elasticity, η the coefficient of

viscosity, and �(�) is the multiply product of � and the strain rate. When � � = 0 , the
analytical solution is:

� � = � exp −�� .
However when � � ≠ 0, the analytical solution is:

� � + ��� − ℎ��������� ��������
with � is a constant determined by the initial conditions.
2.2.Standard Oscillation Model

The standard oscillation equation is defined as follows:
�2�
��2 + �� = 0, (4)

where � is the position, � equal to �
�

= �2, � is the spring constant, � is the mass, and � is the

angular velocity. The analytical solution of equation (4) is:
� � = � cos √�� + � ��� ��,

where � and � are constants determined from the initial conditions.
3. Mittag-Leffler function

A natural function that arises when solving a fractional differential equation is:

�� � ≔
�=0

∞
��

Γ �� + 1� , � ∈ �, �� � > 0 . (5)

In solving the fractional differential equation, the following property is used:
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3.1. Fractional Relaxation Model
The fractional relaxation equation is defined as follows [5]:

���
��� + �� = 0, 0 < � < 1 (7)

where � is the magnitude of the strain in the system, � expressed as �
�
, � is the modulo of

elasticity, and � is the coefficient of viscosity.
Using the Laplace transform and initial value � 0 = 1, the analytical solution of

Equation (7) is:
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Using the Mittag-Leffler function, we get the inverse of the Laplace transform:
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3.2. Fractional Oscillation Model

The fractional oscillation equation is defined as follows:
���
��� + �� = 0, 1 < � < 2 (9)

where � is the position of the spring, � equals to �
�

= �2, � is the spring constant, � is the

mass of the object, � is the angular velocity.
Using the Laplace transform and initial values � 0 = 1, �' 0 = 0, the analytical

solution of equation (9) is as follows:

0��
�� � + �� � = 0 ⟺ ℒ 0��

�� � + �ℒ � � = 0

⟺ ��� � −
�=0

�−1

��−�−1�� 0� + �� � = 0

⟺ ��� � −
�=0

1

��−�−1�� 0� + �� � = 0

⟺ ��� � − ��−1� 0 − � �−2 �'(0) + �� � = 0
⟺ �� + � � � − � �−1 � 0 − � �−2 �' 0 = 0

⟺ � � =
� 0 ��−1 + �' 0 ��−2

�� + �

⟺ � � = � 0 ℒ−1 ��−1

�� + � + �' 0 ℒ−1 ��−2

�� + �

The inverse of the Laplace transform is:
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4. Simulation
4.1. Effect of the order values in fractional relaxation equation

The following is a simulation of the solution of equation (8) for the parameter � =
1; � 0 = 1; and various fractional order values compared to the standard equation
(� = 1).

Figure 2. Graphics of Relaxation Equations

Based on Figure 2, it can be seen that there is a significant difference between the
behavior of the standard relaxation equation and the fractional-order relaxation
equation, namely in the standard relaxation equation the state of the system will
return to a state of equilibrium with the magnitude of the stress on the system being
zero, while in the fractional relaxation equation the system reaches at a state of
equilibrium with the value of the voltage is not equal to zero. Figure 2 illustrates that
in equation (7) the phenomenon of stress relaxation occurs which is one indicator of
the memory effect. In addition, the graphs of the three fractional-order relaxation
equations show quite similar behavior to each other. It is just that if the fractional
order moves closer to 1 then the equilibrium state of the system will move closer to
the t axis (� = 0).

4.2. Effect of the order values in fractional oscillation equation
The simulation of the solution of equation (10) for the parameter values � =
1; � 0 = 1; �' 0 = 1; and some fractional order values is compared with the
standard equation (� = 2) is displayed in Figure 3.
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Figure 3. Graphic of Oscillation Equation solution

Based on Figure 3, it can be seen that there is a significant difference between the
behavior of the standard oscillation equation and the fractional order relaxation
equation, namely in the standard oscillation equation the system experiences periodic
oscillations and has a constant amplitude. While in the fractional oscillation equation,
the system experiences oscillations with a decreasing/shrinking amplitude value and
then towards to zero. In other words, for the long time, the system returns to
equilibrium. This behavior illustrates that there is a certain force that makes the spring
unable to oscillate harmoniously, or in other words, the spring experiences damping
when it oscillates. Thus, it can be said that the system in the fractional oscillation
equation experiences a damped oscillation phenomenon which is also an indicator of
the memory effect.

4.3. Effect of Modulo of Elasticity and Coefficient of Viscosity
Solution simulation with fractional order value � = 0.5 , and some values � from
equation (8) are as follows :

Figure 4.Graph of the Solution of the Relaxation Equation For Some values A
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Based on the graph in Figure 4, information is obtained that the greater the value of �,
the equilibrium state tends to resemble the standard equation or approach the t-axis
(� = 0), and vice versa. This is due to the fact that the tensile strength of the system
also depends on the size of the modulus of elasticity and the coefficient of viscosity,
or in other words, the larger the modulus of elasticity, the worse the tensile strength.

4.4. Effect of Spring Constant, Mass, and Angular Velocity
Using different � values and fractional order p = 1.5, the simulation solution of
equation (10) is as follows:

Figure 5. Graph of the Solution of the Oscillation Equation for Multiple � Values

Based on Figure 5, the oscillatory behavior shown by these three � values ​ ​ is
quite similar to each other, only the oscillations will balance faster if the � value is
also large. That is, the greater the spring constant or the smaller the mass of the
object, the faster the oscillations will balance. This is in accordance with Brown's
research [12] which states that the amount of attenuation is related to the mass of
the object, or in other words, the greater the mass of the object, the smaller the
damping power and vice versa.

Conclusion
In this study, the dynamics of the relaxation-oscillation movement of a viscoelastic object has

been modeled using a Caputo type fractional differential equation. The analytical solution of the
model is obtained by the Laplace transform method. Parameters that affect the dynamics of motion
from the relaxation and oscillation equations include; order of fractional, modulo of elasticity,
coefficient of viscosity, spring constant, mass of object, and angular velocity. For the relaxation
equation, the fractional order affects the movement of the equilibrium state where if the fractional
order moves closer to 1 then the equilibrium state of the system will move closer to the t axis, but
the modulo of elasticity and viscosity affect the tensile strength of the system, where the larger the
modulo of viscosity, the greater the modulo of viscosity. the tensile strength is getting better.
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As for the oscillation equation, the fractional order followed by the spring constant, the mass of
the object, and the angular velocity affect the damping speed of the system, where the greater the
fractional order, the spring constant, or the smaller the mass of the object, the faster the oscillation
motion will balance.
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