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Abstract

Zika virus (ZIKV) is transmitted by Aedes Aegypti mosquito, which is recognized as a vector for viruses
causing dengue fever and chikungunya. This study uses SEIHR‐SEI mathematical model to analyze
the dynamics of Zika virus transmission. In this model, human population (host) is classified into five
compartments: Susceptible Humans (Sh), Exposed Humans (Eh), Infected Humans (Ih), Hospitalized
Humans (Hh) and Recovered Humans (Rh). Meanwhile, the mosquito population (vector) is divide
into three compartments: Susceptible Vectors (Sv), Exposed Vectors (Ev), and Infected Vectors (Iv).
Stability analysis is conducted using Routh‐Hurwitz criteria for assessing local stability and Lyapunov
function for evaluating global stability. Moreover, Basic Reproduction Number (R0), which represents
the average number of new infections produced by one infected individual in a susceptible population,
is derived by using the Next Generation Matrix (NGM) method. The result shows that the equilibrium
point for disease‐free conditions is globally asymptotic stable whenR0 < 1, meanwhile the equilibrium
point for endemic conditions is stable when R0 > 1. The simulation result using endemic data and
sensitivity analysis of three parameters, including contact rate between susceptible humans and
infected humans (c), hospitalization rate of infected individuals (τ ), and mosquito control rate (ω),
reveals that c and ω exert a more significant effect on changes in R0 compared to τ . Therefore,
minimizing contact with infected individuals or implementing vector control is more effective than
isolating or hospitalizing infected patients.

Keywords: Basic reproduction number, vector control, Lyapunov, sensitivity analysis, Zika virus
MSC2020: 92D30, 93C10, 93D05.

Abstrak

Virus Zika (ZIKV) ditularkan oleh nyamuk Aedes Aegypti yang dikenal sebagai vektor penyebab
demam berdarah dan chikungunya. Penelitian ini menggunakan model matematika SEIHR‐SEI untuk
menganalisis dinamika penularan virus Zika. Dalam model ini, populasi manusia (host) diklasifikasikan
menjadi lima kompartemen: manusia Rentan (Sh), manusia terpapar (Eh), manusia terinfeksi (Ih),
Manusia dalam perawatan (Hh), dan manusia sembuh (Rh). Sementara itu, populasi nyamuk (vektor)
dibagi menjadi tiga kompartemen: nymauk rentan (Sv), nyamuk terpapar (Ev), dan nyamuk terinfeksi
(Iv). Analisis kestabilan lokal maupun global dilakukan dengan menggunakan kriteria Routh‐Hurwitz
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dan fungsi Lyapunov. Selain itu, Angka Reproduksi Dasar (R0), yang merupakan angka rata‐rata infeksi
baru yang dihasilkan oleh satu individu yang terinfeksi dalam populasi yang rentan, diturunkan dengan
menggunakan metode Next Generation Matrix (NGM). Hasilnya menunjukkan bahwa titik ekuilibrium
untuk kondisi bebas penyakit adalah stabil asimtotik global ketika R0 < 1, adapun titik ekuilibrium
untuk kondisi endemik stabil ketika R0 > 1. Hasil simulasi menggunakan data endemik dan analisis
sensitivitas tiga parameter yang meliputi tingkat kontak antara manusia yang rentan dan manusia
yang terinfeksi (c), tingkat rawat inap individu yang terinfeksi (τ ), dan tingkat pengendalian nyamuk
(ω), mengungkapkan bahwa c dan ω memberikan efek yang lebih signifikan pada perubahan (R0)
dibandingkan dengan τ . Dari hasil simulasi ini dapat disimpulkan bahwameminimalkan kontak dengan
individu yang terinfeksi atau menerapkan pengendalian vektor lebih efektif daripada mengisolasi atau
merawat pasien yang terinfeksi.

Kata kunci: Bilangan reproduksi dasar, kontrol vektor, Lyapunov, analisis sensitivitas, virus Zika
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Introduction
Zika virus (ZIKV) is capable of infecting humans and causing Zika fever. This viral infection is

prevalent, particularly in tropical and subtropical regions, such as those found in Asia and Africa. The
primary mode of transmission for Zika virus is through the Aedes Aegypti mosquito, a species known
for transmitting various viruses, including chikungunya, dengue fever, yellow fever, West Nile, and
Japanese encephalitis. Aedes Aegypti mosquito acquires the virus by feeding on the blood of infected
humans. Once it is infected, the mosquito can transmit the Zika virus to susceptible humans through
subsequent bites [1]. Although Aedes Aegypti is the principal vector for Zika virus transmission, it is
important to note that other vectors can also contribute to spread the virus. These include Aedes
Albopictus, Aedes Africanus, Aedes Luteocephalus, Aedes Vittatus, Aedes Furcifer, Aedes Hensilii, and
Aedes Apicoargenteus [2][3].

Zika virus (ZIKV) was initially identified in 1947 in the Zika forests of Uganda near Lake Victoria,
where Rhesus Monkeys were found to be infected during an ecological investigation of yellow fever [4].
These Rhesus monkeys, serving as sentinel animals, were intentionally placed in tree cages in the Zika
forest as part of yellow fever research [5]. The first documented case of a human being infected with
the Zika virus was reported in 1964. The individual, a 28‐year‐old worker, experienced initial symptoms
such as a mild headache. Subsequently, a rash developed on the face, neck, body, arms, and legs on
the following day. Other symptoms included temporary fever, malaise, and back pain. Interestingly,
neither of the two patients had a fever at night, and the rash had faded. By the third day, the patient
felt healthy, although a rash persisted, ultimately disappearing two days later [6]. In April 2007, a Zika
virus outbreak was initially reported on the Pacific island of Yap in the Federated States of Micronesia,
resulting in 108 cases exhibiting Zika virus symptoms. Subsequently, the Zika virus outbreak extended
to Indonesia, Micronesia (a country situated in an archipelago near the Pacific Ocean), the Philippines,
Polynesia (with the largest populations in Tahiti and Moorea), and Easter Island in the South Pacific
between October 2012 and April 2014 [5]. Several previous case investigations have also indicated the
presence of Zika virus in various areas in Indonesia. In Klaten, for example, serological evidence of Zika
was identified in seven individuals in 1977‐1978. Furthermore, in 1979, arbovirus serological research
in Lombok revealed Zika antibodies in 31% of the 71 samples tested [7][8].

The primary symptoms of Zika fever closely resemble to dengue fever, encompassing fever, a
maculopapular rash that typically extends from the face to the body, joint and muscle discomfort,
vomiting, and bilateral non‐purulent conjunctivitis [9]. The incubation period for the Zika virus ranges
from 2 to 7 days [10]. The Zika virus can be transmitted whether an individual is asymptomatic,
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symptomatic, or even after symptoms have disappeared. Notably, a significant proportion of infected
individuals either display mild symptoms or remain asymptomatic, leading to an unawareness of
their Zika virus infection status [11]. Apart from the bite of Aedes Aegypti, Zika virus can also be
transmitted through direct contact between susceptible and infected individuals through sexual contact
[12]. This type of transmission distinguishes the Zika virus from the dengue and chikungunya viruses
transmission[13]. Despite being a global threat to public health, there is presently no vaccine or cure
available for Zika virus infection [12]. Addressing this challenge requires implementing measures to
control and potentially suppress the spread of the Zika virus. These initiatives include enhancing public
awareness through health programs, promoting the use of safety tools for couples planning to conceive
during pregnancy (or abstaining from sexual relations), and implementing controls such as isolating
Zika virus‐infected patients in hospitals. Furthermore, vector control, a crucial aspect of Zika virus
management, entails strategies to restrict or diminish the population of vectors carrying the virus.
Vector control options include installing mosquito nets or fans, using aromatherapy or anti‐mosquito
lotions, spraying insecticides, and eliminating stagnant water that serves as a breeding ground for
mosquito larvae [13].

Mathematical approach of Zika virus transmission has been undertaken through the exploration
of various models and parameters. Chunxiao Dinga, Nana Tao, and Yuanguo Zhua, for example,
investigated mathematical models of Zika virus transmission emphasizing optimal control parameters
as an effective intervention strategy [14]. F. B. Agusto, S. Bewick, and W. F. Fagan conducted a
mathematical model analysis specifically focused on the role of sexual transmission in the Zika virus
spread, considering it as the only arbovirus capable of transmission through sexual contact [1]. Raúl
Isea and Karl E. Lonngren analyzed mathematical models encompassing the dynamics of dengue,
chikungunya, and Zika virus transmission [15]. In addition, S. K. Biswas, U. Ghosh, and S. Sarkar
investigated a mathematical model addressing the spread of the Zika virus, which included the concept
of vector control as a strategy for managing its transmission. They explained how the Zika virus spreads
through mosquito bites and sexual interactions with infected individuals [13].

In contrast to previous studies, this paper employs a SEIHR‐SEI model for Zika transmission,
which encompasses the hospitality compartment within the human population. Moreover, besides
mosquito transmission, the model considers horizontal transmission, where the virus spreads
through human‐to‐human contact, including sexual contact, blood transfusion, or organ transplant.
Additionally, the model integrates vector control as a strategy to manage and mitigate the spread of
the Zika virus.

The remaining part of this paper discusses various aspects, including model construction,
positivity and boundedness of solutions, determining equilibrium states and stability, deriving basic
reproduction numbers, sensitivity analysis, numerical simulations, and interpretation.

Model Formulation
In this section, we develop a mathematical model to illustrate the population dynamics of

Zika virus transmission, considering predefined assumptions. The model encompasses two distinct
populations: humans and mosquitoes. The human population is divided into five compartments,
namely susceptible humans (Sh), exposed humans (Eh), infected humans (Ih), hospitalized humans
(Hh), and recovered humans (Rh). Meanwhile, the mosquito population is classified into three
compartments: susceptible mosquitoes (Sv), exposed mosquitoes (Ev), and infected mosquitoes (Iv).

The assumptions employed in this model are outlined as follows:

1. The closure of both human and mosquito populations, implying that changes in population
numbers are solely influenced by natural birth and death rates (without migration). The
recruitment rates (natural births) of humans and mosquitoes are denoted by Λh and Λv,
respectively, while the rates of natural deaths are represented by µh and µv for humans and
mosquitoes, respectively.

2. The transmission of zika virus to the human population can transpire through the bite of
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zika virus‐infected mosquitoes as well as through sexual contact, blood transfusions, or organ
transplants involving infected humans. b represents the rate of mosquito bites, with the virus
transmission probability denoted by α1, while c denotes the contact rate between susceptible
humans and infected humans, with the virus transmission probability of α2.

3. Susceptible mosquitoes become infected when they bite infected humans. α3 signifies the
probability of virus transmission per bite of a susceptible mosquito from an infected human.

4. Exposed humans and Exposedmosquitoes can transition to infected compartments at rates η and
σv respectively.

5. Infected humans have the option of receiving treatment, with a hospitalization rate denoted by
τ .

6. The rates at which hospitalized infected humans and those unable to recover are represented by
θI and θH , respectively.

7. Infected humans, whether hospitalized or not, can recover at the corresponding rates of θI and
θH .

8. Hospitalized infected humans can transmit the virus to mosquitoes, but at lower contact rates
compared to untreated infected humans. In this model, η represents the relative probability of
virus transmission from a hospitalized infected human.

9. Individuals who have recovered from the Zika virus either possess lifelong immunity.

10. Vector control measures are implemented tomanagemosquito breeding andmitigate the spread
of the Zika virus, with the mosquito control rate denoted as ω.

Compartment diagram illustrating the transmission of Zika virus in both humans andmosquitoes,
incorporating the impact of hospitalization within human population and the implementation of vector
control inmosquito population, is presented in Figure 1. Subsequently, referring to Figure (1), we derive
the following system of non‐linear differential equations:

dSh

dt
= Λh −

(
bα1Iv
Nh

+
cα2Ih
Nh

)
Sh − µhSh,

dEh

dt
=

(
bα1Iv
Nh

+
cα2Ih
Nh

)
Sh − (ξ + µh)Eh,

dIh
dt

= ξEh − (θI + τ + µh)Ih,

dHh

dt
= τIh − (θH + µh)Hh,

dRh

dt
= θIIh + θHHh − µhRh,

dSv

dt
= Λv −

(
bα3Ih
Nh

+
bα3ηHh

Nh

)
Sv − (µv + ω)Sv,

dEv

dt
=

(
bα3Ih
Nh

+
bα3ηHh

Nh

)
Sv − (σv + µv + ω)Ev,

dIv
dt

= σvEv − (µv + ω)Iv,

(1)

with the initial conditions are Sh(0) > 0,Eh(0) ≥ 0, Ih(0) > 0 Hh(0) ≥ 0, Rh(0) ≥ 0, Sv(0) > 0,
Ev(0) ≥ 0, Ih(0) > 0. The total of human population is denoted as Nh, with Nh = Sh(t) + Eh(t) +
Ih(t) + Hh(t) + Rh(t), meanwhile the total population of mosquitoes is defined as Nv, with Nv =
Sv(t) + Ev(t) + Iv(t).
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Figure 1. Compartment diagram of SEIHR‐SEI model for Zika virus transmission.

The non‐negativity and boundedness of solution

To analyze that the solutions for each compartment are non‐negative, observe that:

dSh

dt
= Λh −

(
bα1Iv
Nh

+
cα2Ih
Nh

)
Sh − µhSh,≥ −

[(
bα1Iv
Nh

+
cα2Ih
Nh

)
+ µh

]
Sh,

dSh

Sh
≥ −

[(
bα1Iv
Nh

+
cα2Ih
Nh

)
+ µh

]
dt, (2)

By integrating both sides of equation, we obtain:

Sh(t) ≥ Sh(0) · exp
∫
−
[(

bα1Iv
Nh

+
cα2Ih
Nh

)
+ µh

]
dt ≥ 0 (3)

Similar techniques can be applied to the remaining compartments to demonstrate that the solutions
of each equation (1) are non‐negative. Next, to determine that the solution is bounded, add up all the
differential equations from each human and mosquito compartment as follow:

dNh

dt
=

dSh

dt
+

dEh

dt
+

dIh
dt

+
dHh

dt
+

dRh

dt
= Λh − µNh,

dNh

dt
+ µhNh = Λh.

by using integrating factors [16], we get

Nh(t) =
Λh

µh
(1− e−µht) +Nh(0)e

−µht.

WhenNh(0) ≤ Λh
µh

, thenNh(t) ≤ Λh
µh

, and for t→∞, we get 0 < Nh(t) ≤ Λh
µh

.
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Meanwhile, by summing up the differential equations for the mosquito population, we obtain:

dNv

dt
=

dSv

dt
+

dEv

dt
+

dIv
dt

= Λv − (ω + µv)Nh, ←→ dNv

dt
+ (ω + µv)Nv = Λv.

by integrating both sides of the equation, we have

Nv(t) =
Λv

(ω + µv)
(1− e−(ω+µv)t) +Nv(0)e

−(ω+µv)t.

When Nv(0) ≤ Λv
(ω+µv)

, then Nv(t) ≤ Λv
(ω+µv)

, and for t → ∞, we get 0 < Nv(t) ≤ Λv
(ω+µv)

.
Consequently we have

Ω =

{
(Sh, Eh, Ih,Hh, Rh, Sv, Ev, Iv) ∈ R8+ | 0 < Nh(t) ≤

Λh

µh
, and 0 < Nv(t) ≤

Λv

(ω + µv)

}
, (4)

which is a positively invariant and attracting set of the model (1).

Equilibrium States

The equilibrium state is reached when the population size remains constant, indicating that Sh,
Eh, Ih,Hh,Rh, Sv,Ev, and Iv remain unchanged. In the SEIHR‐SEI mathematical model, there are two
equilibriums: Disease‐free equilibriumand Endemic Equilibrium. The equilibrium states are determined
by equating the right‐hand side of the differential equations system (1) to zero,

Ẋ = f̄(X) = 0 (5)

with X = (Sh, Eh, Ih,Hh, Rh, Sv, Ev, Iv). The disease‐free equilibrium is characterized by the
absence of Zika virus spread, resulting in no new infections and no individuals infected with Zika virus
within the population. By substituting Ih = 0 and Iv = 0 to equation (5), then the disease‐free
equilibrium state is expressed as follows:

E0 =
(
S0
h, E

0
h, I

0
h,H

0
h, R

0
h, S

0
v , E

0
v , I

0
v

)
=

(
Λh

µh
, 0, 0, 0, 0,

Λv

µv + ω
, 0, 0

)
. (6)

Next, the endemic equilibrium point is a state in which individuals are continuously infected with
Zika virus, allowing the virus to persist and spread within the population, resulting in more than one
new infection. By solving equation (5), with Ih ̸= 0 and Iv ̸= 0, the endemic equilibrium state is given
by

E∗ = (S∗
h, E

∗
h, I

∗
h,H

∗
h, R

∗
h, S

∗
v , E

∗
v , I

∗
v ) , (7)

where

S∗
h =

Λh

λh + µh
, E∗

h =
λhΛh

K1 (λh + µh)
, I∗h =

λhξΛh

K1K2 (λh + µh)

H∗
h =

λhξτΛh

K1K2K3 (λh + µh)
, R∗

h =
(θIK3 + θHτ)λhξΛh

K1K2K3 (λh + µh)µh
,

S∗
v =

Λv

λv +K4
, E∗

v =
λvΛv

K5 (λv +K4)
, I∗v =

σvλvΛv

K4K5 (λv +K4)
.

and

K1 = η + µh, K2 = θI + τ + µh, K3 = θH + µh, K4 = µv + ω K5 = σv + µv + ω,

λh =
bα1I

∗
v

Nh
+

cα2I
∗
h

Nh
, λv =

bα3I
∗
h

Nh
+

bα3ηH
∗
h

Nh
.
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Basic Reproduction Number (R0)

Basic reproduction number (R0) represent the average number of newly infected susceptible
individuals (secondary infections) generated by a single infected individual (primary infection) within a
susceptible population [17]. In this study, the Next GenerationMatrix (NGM) method will be employed
to calculate this number. The population involved in determining the basic reproduction number is the
infected compartment, encompassing Eh, Ih,Hh, Ev, and Iv.

Let J0 represents the Jacobi matrix of the infected compartment variable, which is substituted
under disease‐free conditions. Subsequently, decompose the matrix J0 into F − V , where F is the
interaction matrix (non‐linear), and V is the transition matrix (linear).

F =



0
cα2Λh

Nhµh
0 0

bα1Λh

Nhµh
0 0 0 0 0
0 0 0 0 0

0
bα3Λv

NhK4

bα3ηΛv

NhK4
0 0

0 0 0 0 0


and V =


K1 0 0 0 0
−ξ K2 0 0 0
0 −τ K3 0 0
0 0 0 K5 0
0 0 0 −σv K4

 .

The basic reproduction number (R0) is the spectral radius or the largest positive eigenvalue of
the Next Generation Matrix or a product of FV −1, then we get

R0 =
1

2

cα2ξ

K1K2
+

1

2

√
c2α2

2ξ2

K1
2K2

2 +
4b2α3µhΛvξ (K3 + ητ)σvα1

ΛhK4
2K1K2K3K5

. (8)

We will letR0 = R1 +R2, where

R1 =
1

2

cα2ξ

K1K2
, R2 =

1

2

√
c2α2

2ξ2

K1
2K2

2 +
4b2α3µhΛvξ (K3 + ητ)σvα1

ΛhK4
2K1K2K3K5

.

Local Stability Analysis

Local stability analysis is used to evaluate the stability properties of equilibrium points in a
mathematical system. An equilibrium point is considered locally stable if all eigenvalues of the Jacobian
matrix have negative real parts. Conversely, if any eigenvalue has a positive real part, the equilibrium
point is considered unstable [18]. The Jacobian matrix of the SEIHR‐SEI model is shown in Equation (9).

J =



−λh − µh 0 −cα2Sh

Nh
0 0 0 0 −bα1Sh

Nh

λh −K1
cα2Sh

Nh
0 0 0 0

bα1Sh

Nh
0 ξ −K2 0 0 0 0 0
0 0 τ −K3 0 0 0 0
0 0 θI θH −µh 0 0 0

0 0 −bα3Sv

Nh
−bα3ηSv

Nh
0 −λv −K4 0 0

0 0
bα3Sv

Nh

bα3ηSv

Nh
0 λv −K5 0

0 0 0 0 0 0 σv −K4



, (9)

Let J0 is jacobian matriks of J evaluated in the disease free equilbrium, then the caracteristic
equation of matrix (J0 − λI) is

P (λ) = (λ+ µh)
2(λ+K4)(a5λ

5 + a4λ
4 + a3λ

3 + a2λ
2 + a1λ+ a0) = 0, (10)
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where

a5 =1,

a4 =K1 +K2 +K3 +K4 +K5,

a3 =(K4 +K5 +K3) (K1 +K2) + (K3 +K5)K4 +K3K5 +K1K2 (1− 2R1) ,

a2 =((K3 +K5)K4 +K3K5)K1 + ((K3 +K5)K4 +K3K5)K2 +K4K5K3+

K1K2 (K4 +K5 +K3) (1− 2R1) ,

a1 =K1K2 (K3K4 +K5K4 +K3K5) (1− 2R1) +
K1K2K3K4K5

K3 + ητ
,(

K3 + ητ

K1
+

K3 + ητ

K2
+R1

2 −R2
2

)
,

a0 =K5K4K3K2K1 (1−R0
∗) ,

whereR∗
0 = R2

0+2R1(1−R0) [19]. The first three eigenvalues are negative, namely−µh,−µh,−K4.
As for fifth‐order polynomials, based on the Routh‐Hurwitz criterion, the equation (10) will have all
negative roots when R0 < 1, R1 < 1/2, R1 > R2, and a4a3 > a2a5, a2b1 > a4b2, with b1 =
(a4a3 − a2a5)/a4 and b2 = (a4a1 − a0a5)/a4. Noted that, ifR∗

0 < 1 result in R0 < 1.
Moreover, for local stability under the endemic conditions (END), let J1 represents the jacobian

matrix evaluated at the endemic equilibrium, the characteristic equation of matrix (J1 − λI) is
presented in Equation 11.

P (λ) =(λ+ µh)(λ+K4)(λ
6 + a5λ

5 + a4λ
4 + a3λ

3 + a2λ
2 + a1λ+ b0) = 0, (11)

with

z∗ =λ∗
h + λ∗

v + µh,

a5 =(K1 +K2 +K3 +K4 +K5 + z∗),

a4 =((K2 +K3 +K4 +K5 + z∗)K1 + (K3 +K4 +K5 + z∗)K2

+ (K4 +K5 + z∗)K3 + (K4 + z∗)K5 + (λ∗
h + µh)(λ

∗
v +K4)− ξcα2S

∗
h)/Nh,

a3 =((((K1 +K2 +K4 + z∗)K5 + (K2 +K4 + z∗)K1 + (K4 + z∗)K2 + (λ∗
h + µh)(λ

∗
v +K4))K3

+ ((K2 +K4 + z∗)K1 + (K4 + z∗)K2 + (λ∗
h + µh)(λ

∗
v +K4))K5 + ((K4 + z∗)K2

+ (λ∗
h + µh)(λ

∗
v +K4))K1 +K2(λ

∗
h + µh)(λ

∗
v +K4))Nh − ξcα2S

∗
h(K3 +K4 +K5 + λ∗

v + µh))/Nh,

a2 =((((K2 +K4 + z∗)K1 + (K4 + z∗)K2 + (λh + µh)(λv +K4))K5 + ((K4 + z∗)K2

+ (λh + µh)(λv +K4))K1 +K2(λh + µh)(λv +K4))K3 + (((K4 + z∗)K2

+ (λh + µh)(λv +K4))K1 +K2(λh + µh)(λv +K4))K5 +K1K2(λh + µh)(λv +K4))

− ((K4 +K5 + λv + µh)K3 + (K4 + λv + µh)K5 + µh(K4 + λv))ξcα2S
∗
h/Nh

− ξb2σvα1α3S
∗
hS

∗
v/N

2
h ,

a1 =(((((K4 + z∗)K2 + (λh + µh)(λv +K4))K1 +K2(λh + µh)(λv +K4))K5

+K1K2(λh + µh)(λv +K4))K3 +K1K2K5(λh + µh)(λv +K4))

− (((K4 + λv + µh)K5 + µh(K4 + λv))K3 + µhK5(K4 + λv))ξcα2S
∗
h/Nh

− ξb2σvα1α3S
∗
hS

∗
v(ητ + µh +K3)/N

2
h ,

a0 =K1K2K3K5(λh + µh)(λv +K4)−K3K5ξcα2µhS
∗
h(λv +K4)/Nh

− ξb2σvα1α3µhS
∗
hS

∗
v(ητ +K3)/N

2
h .
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By using Routh‐Hurwitz criteria of stability, considering that

b1 =
a4a3 − a2a5

a4
, b2 =

a4a1 − a0a5
a4

, c1 =
b1a2 − b2a4

b1
, c2 = a0, d1 =

c1b2 − a0b1
c1

,

then endemic equilibrium is locally asimptotically stabil when bi > 0, i = 0, 1, ..., 6 and satisfy the
contitions a5a4 > a6a3, b1a3 > a5b2, c1b2 > b1c2, and d1c2 > c1a0.

Global Stability Analysis

The global stability analysis at the disease‐free equilibrium point (DFE) will be conducted by using
Lyapunov function. LetX=(Sh, Eh, Ih,Hh,Rh, Sv, Ev, Iv), then define the Lyapunov fuction below

V (X) =W1

(
Sh − S0

h − S0
h ln

(
Sh

S0
h

))
+W2Eh +W3Ih +W4Hh +W5

(
Sv − S0

v − S0
v ln

(
Sv

S0
v

))
+W6Ev +W7Iv,

(12)

with coefficientsWi, for i = 1, .., 7 are all positif.

Base on the definition [20] [21] [22], we will examine whether the Lyapunov function (12) satisfy
the following conditions: (i). V (X) = 0 for X = E0; (ii). V (X) > 0 For all X ∈ Ω and (iii).
V ′(X) < 0 for allX ∈ Ω.

(i) ForX = E0, then

V (E0) =W1

(
S0
h − S0

h − S0
h ln

(
S0
h

S0
h

))
+W2E

0
h +W3I

0
h +W4H

0
h

+W5

(
S0
v − S0

v − S0
v ln

(
S0
v

S0
v

))
+W6E

0
v +W7I

0
v ,

V (E0) =W1(0) +W2(0) +W3(0) +W4(0) +W5(0) +W6(0) +W7(0) = 0. (13)

(ii) For allX ∈ Ω, then

V (X) =W1

(
Sh − S0

h − S0
h ln

(
Sh

S0
h

))
+W2Eh +W3Ih +W4Hh

+W5

(
Sv − S0

v − S0
v ln

(
Sv

S0
v

))
+W6Ev +W7Iv,

V (X) =W1S
0
h

(
Sh

S0
h

− 1− ln
(
Sh

S0
h

))
+W2E

0
h +W3I

0
h +W4H

0
h

+W5S
0
v

(
Sv

S0
v

− 1− ln
(
Sv

S0
v

))
+W6E

0
v +W7I

0
v . (14)

V (X) ≥ 0 only if

(
Sh

S0
h

− 1− ln
(
Sh

S0
h

))
≥ 0 and

(
Sv

S0
v

− 1− ln
(
Sv

So
v

))
≥ 0. Let

Sh

S0
h

= z1 and

Sv

S0
v

= z2, then suppose a function f(zi) = zi − 1− ln zi. This function f(zi)will attains a global

minimum at zi = 1 and f(1) = 0, thus f(zi) ≥ 0 for all zi. Consequently, V (X) will be positive
for allX ∈ Ω,
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(iii) The first derivative of the Lyapunov function is given by

V ′(X) =W1

(
S′
h + 0− So

h

(
S′
h

Sh

))
+W2E

′
h +W3I

′
h +W4H

′
h +W5

(
S′
v + 0− So

v

(
S′
v

Sv

))
+W6E

′
v +W7I

′
v,

=W1S
′
h

(
1−

So
h

Sh

)
+W2E

′
h +W3I

′
h +W4H

′
h +W5S

′
v

(
1− So

v

Sv

)
+W6E

′
v +W7I

′
v.

Substitute the system (1) into V ′(X), then we have

V ′(x) =W1

(
Λh − (bα1Iv + cα2Ih)

Sh

Nh
− µhSh

)(
1−

So
h

Sh

)
+W2

(
− (bα1Iv + cα2Ih)

Sh

Nh
−K1Eh

)
+W3 (ξEh −K2Ih)

+W4 (τIh −K3Hh)

+W5

(
Λv − bα3 (Ih + ηHh)

Sv

Nh
−K4Sv

)(
1− Svo

Sv

)
+W6

(
bα3 (Ih + ηHh)

Sv

Nh
−K5Ev

)
+W7 (σvEv −K4Iv) .

By substituting S0
h = Λh

µh
, S0

v = Λv
K4

and simplifying the last equation of V ′(t), we obtain

V ′(x) =− µhW1
(Sh − So

h)
2

Sh
−K4W5

(Sv − So
v)

2

Sv

+ (W2 −W1) (bα1Iv + cα2Ih)
Sh

Nh
+ (W6 −W5) bα3 (Ih + ηHh)

Sv

Nh

+ Eh (W3ξ −W2K1) + Ih

(
W1cα2 +W4τ +W5

bα3Λvµh

(K4Λh)
−W3K2

)
+Hh

(
W5

bα3ηΛvµh

(K4Λh)
−W4K3

)
+ Ev (W7σv −W6K5)

+ Iv (W1bα1 −W7K4) .

Next, select the coefficient ofW1,W2,W3,W4,W5,W6,W7 as follows:

w1 = w2 =
ξ

K1K2
, w3 =

1

K2
, w4 =

b2α3µhΛvξησvα1

ΛhK
2
4K1K2K3K5

, w5 = w6 =
bξσvα1

K1K2K4K5
, and

w7 =
bξα1

K1K2K4
. Subsequently, the derivative of the Lyapunov function becomes

V ′(x) =−
µhξ (Sh − So

h)
2

(K2K1Sh)
− bξσvα1 (Sv − So

v)
2

(K1K2K5Sv)
− Ih (1−R∗

0) . (15)

Then, V ′(x) < 0 holds when R0 < 1.

As a result, it can be concluded that the disease‐free equilibrium point (DFE) is globally asymptotically
stable whenR0 < 1.

Numerical Simulation
Through graphical representations, numerical simulations are performed to depict the dynamics

of each compartment of the SEIHR‐SEI model for Zika virus transmission in the presence of vector
control, using Maple software. The data used in these numerical simulations are arbitrary but comply
with the conditions required for the existence and stability of the disease‐free equilibrium (DFE) and
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endemic equilibrium (END). Data for numerical simulations under disease‐free conditions are shown in
Table 1.

Table 1. Data of parameter values for desease‐free simulation.

Λh Λv µh µv θH θI b c

7 100 0.27 0.55 0.329 0.269 0.575 0.373
ω ξ τ σv α1 α2 α3 η

0.594 0.581 0.987 0.693 0.772 0.375 0.765 0.153

By substituting the data from Table 1 into the equation for R0, we get R0 ≈ 0.38. This value
indicates that, on average, one hundred infected individuals can infect 38 susceptible people, suggesting
that the disease would diminish within the population. As illustrated in Figure 2, starting with an
initial population of 30 individuals in each compartment, over time, the number of susceptible humans
stabilizes at 25, while the other compartments reach a steady state on zero.

Figure 2. The dynamic of human population under disease‐free condition.

Figure 3. The dynamic of mosquitoes population under disease‐free condition.
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Similarly, the dynamics of the mosquito population reached stability with 87 susceptible
mosquitoes. At the same time, the populations of exposed and infected mosquitoes stabilized to 0,
as shown in Figure 3.

Furthermore, the parameter values used in endemic conditions are shown inTable 2

Table 2. Data of parameter values for endemic state simulation.

Λh Λv µh µv θH θI b c

15 120 0.23 0.53 0.235 0.227 3.785 3.585
ω ξ τ σv α1 α2 α3 η

0.375 3.375 0.335 3.425 0.784 0.745 0.753 0.523

Using data from Table 2, the value of the basic reproduction number is R0 ≈ 6.77. This
indicates that, on average, one infected person can infect 6 susceptible individuals, suggesting the
virus’s sustained spread within the population. With this dataset, dynamic simulations for human and
mosquito populations are depicted in Figures 4 and 5. Starting with an initial condition of 30 individuals
in each human compartment and 50 in eachmosquito compartment, the populations stabilize over time
to an endemic equilibrium, where (S∗

h, E
∗
h, I

∗
h,H

∗
h, R

∗
h, S

∗
v , E

∗
v , I

∗
v ) = (14, 3, 14, 10, 24, 95, 8, 30).

Figure 4. The dynamic of human population under the endemic condition.

Next, sensitivity analysis will be conducted to investigate how the change of parameters impact
the basic reproduction number (R0). Three parameters will be analyzed: the contact rate between
susceptible humans and infected humans c, hospitalization rate of infected individuals τ , andmosquitos
control rate ω. The normalized sensitivity index is calculated by normalizing the alteration in parameter
values on the basic reproduction number R0, as expressed in the following equation [17][23][24].

SIR0
p =

∂R0

∂p

p

R0
, (16)

where p is the parameter of system (1). Using endemic equilibrium (END) data in Table 2, the parameter
sensitivity index to the basic reproduction number (R0) is presented in Table 3, Meanwhile, graphical
simulations for each parameter are illustrated in Figures 6, 7, and 8.

According to the sensitivity index in Table 3, the mosquito control rate (ω) and the contact
rate between susceptible humans and infected humans (c) exert a significant impact on variations
in the basic reproduction number (R0) in comparison to the hospitalization rate of infected humans
(τ ). Specifically, c is directly proportional to R0, indicating that an increase in the c value leads to an
elevation in R0. In contrast to c, the parameters τ and ω are inversely proportional to R0, indicating
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Figure 5. The dynamic of mosquitoes population under the endemic condition.

Table 3. Parameter sensitivity index and the change of R0

Parameter (P)
Indeks R0

Sensitivitas P + 10% P − 10% P + 20% P − 20%
c 0.3040672221 6.828 6.713 6.885 6.656
τ ‐0.1805690304 6.447 7.189 6.190 7.754
ω ‐0.3185055932 6.256 7.421 5.842 8.268

Figure 6. The effect of contact rate c onR0

that an increase in either parameters results in a decrease in the value of R0. The graphics illustrating
the effect of changing parameters c, τ , and ω on the basic reproduction number (R0) are presented in
Figures 6, 7, 8.
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Figure 7. The effect of hospitalized rate τ onR0

Figure 8. The effect of vector control rate ω onR0

Conclusion
In this study, SEIRH‐SEI mathematical model is constructed to describe the transmission of Zika

virus. Human population is divided into five compartments: Susceptible Humans (Sh), ExposedHumans
(Eh), Infected Humans (Ih), Hospitalized Humans (Hh) and Recovered Humans (Rh). Meanwhile the
mosquito population (vector) is divided into three compartments, namely Susceptible Vectors (Sv),
Exposed Vectors (Ev), and Infected Vectors (Iv). In human populations, the model assumes that the
virus spreads through contact with infected humans or bites from virus‐infected mosquitoes. As for
mosquitoes, transmission occurs when susceptible mosquitoes bite infected humans. Additionally,
a control vector is introduced to manage mosquito growth, potentially reducing virus transmission
between humans and mosquitoes.

The analysis result reveals two equilibrium states: disease‐free (DFE) and endemic (END). DFE
stability is achieved when the basic reproduction number, representing the average number of new
infections produced by one infected individual in a susceptible population, is R0 < 1. Conversely,
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END stability occurs whenR0 > 1. Sensitivity analysis based on endemic simulation data indicates that
among the considered parameters (contact rate between susceptible and infected humans c, treatment
rate for infected humans τ , and mosquito control rate ω), c and ω have a more pronounced impact on
changing R0 than τ . Essentially, reducing contact with infected individuals and implementing vector
control are more effective strategies than isolating or treating infected patients.

Policy makers can prioritize minimizing human‐to‐human contact by implementing outreach
programs to raise awareness about the spread of the Zika virus and promoting social distancing
measures among affected individuals. Additionally, it is crucial to continue advocating for mosquito
control measures, including fumigation and the use of anti‐mosquito, particularly during the rainy
season when mosquitoes are most active in breeding.
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