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Abstract 

The purpose of this study is to construct a multilevel mixed linear model for panel data by estimating 
parameters and testing the hypothesis of fit of the model with case studies in determining the 
prediction of the health index for the marginal and conditional models on the factors that influence 
the prediction of the health index in West Java for 2016 data. -2021, with time (year) and region 
(district and city) variables as factors involved in the model. Multilevel mixed linear model is the 
development of a mixed linear model that can be used to analyze correlated panel data. Parameter 
estimation uses the Maximum Likelihood (ML) method to estimate fixed effect parameters and 
Restricted Maximum Likelihood (REML) to estimate covariance parameters. The results obtained by 
the health index prediction model in West Java, both for the marginal and conditional prediction 
models and goodness of fit model. 
 

Keywords : Panel Data, Mixed Linear Models, Maximum Likelihood (ML), Restricted Maximum 
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Introduction 

The use of statistical analysis in various studies and scientific disciplines is used as a basis for 
decision making, especially by policy makers, namely regional governments. Policy making is no longer 
based on subjective or political comparisons, but is carried out by taking into account data, design and 
analysis. One very basic policy is in the health sector. The health index is one of three components 
that build the human development index (HDI). The HDI value is used as a parameter to measure the 
development of a region, whether it is a further progress of a country's development or vice versa. 
Thus, it is important to acknowledge the factors significantly affecting the health index of a region. 

Comprehensive statistical analysis taking into account various variables and the completeness 
of the information will greatly affect whether or not the results of the analysis are good. Data analysis 
that has been done so far is data analysis with cross section data structure or data with time series. 
The weakness of each data analysis tends to ignore variations in data changes. For cross-sectional data, 
it only pays attention to variations in the object of research, while for time series data, variations in 
the time of observation observed is a fixed object. A more comprehensive alternative is panel data 
analysis with a combined data structure between cross section and time series data, taking into 
account variations in data changes for both the research object and the time of study [17],[18],[19]. 
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The aim of the research is to formulate  a mathematical model on a two-level mixed linear 
model on panel data for factors that influence the health index in West Java by estimating model 
parameters and determining the best model fit test that can be used as a basis for making 
development priority policies, especially in the health sector. This research will look at the time factor 
(year) and regional factor (district/city) in the health index panel data in West Java to predict the 
health index in West Java with the marginal prediction model and the conditional prediction model 
from West Java health index data in 2016- 2021. Multilevel mixed linear model is the development of 
a mixed linear model that can be used to analyze correlated panel data. 
 
Method 

1. Linear Regression Models 

The linear regression model is an approach to modeling the relationship between dependent 

observations 𝒀 = (𝑦1, … , 𝑦𝑛)′  and one or more independent variables denoted by 𝑿 = (𝑥𝑖𝑗)  the 

matrix model 𝑛 × 𝑘, where 𝑥𝑖𝑗   is the value of the explanatory variable 𝑗 for the observation 𝑖. The 

linear regression model with 𝑛 observations and 𝑝 the dependent variable for each data studied is as 

follows[1]: 

𝑦𝑖 = 𝛽0 + 𝑥𝑖1𝛽1 + 𝑥𝑖2𝛽2 + ⋯ + 𝑥𝑖𝑗𝛽𝑗 + 𝜀𝑖, 𝑖 = 1,2, … , 𝑛 𝑎𝑛𝑑 𝑗 = 1,2, … , 𝑝 (1) 

In matrix notation the linear regression model can be stated as follows[2]: 

𝒀 = 𝑿𝜷 + 𝜺 (2) 

where 𝑌 :  the vector 𝑛 × 1 of the dependent or response variable 

          𝑿 : the matrix 𝑛 × 𝑝 of the independent or predictor variables 

          𝜷 : the vector 𝑝 × 1 of the unknown parameters 

          𝜺  : represents the error     

      𝐸(𝜺) ∶ 0   

 𝑉𝑎𝑟(𝜺) ∶ 𝜎2𝑰. 

 

2. Mixed Linear Model 

The linear regression model for longitudinal data becomes less suitable because longitudinal data 

is a correlated data. Correlation found in longitudinal data can be overcome by including random 

effects in the form of parameters specific to the study unit into the model [2]. Mixed linear model or 

Linear Mixed Model (LMM) is a model consisting of a mixture of fixed effects and random effects. 

Fixed effects are parameters whose values are unknown and are related to categorical or classification 

variables [3]. Of all the conditions of fixed effect is an interesting thing that is the main goal of research. 

Random effect is a random value related to the level of random factor i.e. a classification variable that 

can be considered as a random sample of the population being studied [3]. In contrast to fixed effects 

which are represented by parameters in LMM, random effects are represented by random variables 

which are usually assumed to follow a normal distribution [2]. While random effects usually represent 

random deviations from the relationship explained by fixed effects, random effects in mixed linear 

models can be either random intercepts or random slopes [3]. 

Mixed linear regression models can be used to model the correlation among observations of 

longitudinal data by assuming that each study unit is associated with a random effect whose value 

cannot be observed [5]. There are research units, all research units are collected at the same time, . 

The mixed linear model for the research unit is stated as follows 𝑡 = 1, … , 𝑇𝑖 [3]: 

𝒀𝑖 = 𝒁𝑖𝜶𝑖 + 𝑿𝑖𝜷 + 𝜺𝑖  (3) 

Where  𝒀𝑖  : vector of response for  ith research unit  

            𝑿𝑖 ∶ matrix 𝑇𝑖  x 𝑝 of as many 𝑝 covariates as the first column is a constant 1  
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            𝜷   : vector of fixed effect parameters associated with the 𝑝 covariates in the matrix 𝑿𝑖   

            𝒁𝑖 : matrix representing as many 𝑞 covariate values as the first column is constant 1 

            𝜶𝑖: the vector of random effects associated with the 𝑞 covariates in the matrix 𝒁𝑖 .  

Random effects specific 𝜶𝑖  are assumed to be normally distributed with a mean of zero and the 

variance covariance matrix 𝑫  which is a positive definite matrix of size 𝑞x𝑞 . The random error 

component is also assumed to follow a normal distribution with a mean of zero and a variance 

covariance matrix 𝑹𝑖  of size 𝑇𝑖  x 𝑇𝑖 . Random effects 𝜶𝑖  with random error components 𝜺𝑖  are 

assumed to be mutually independent. 

 

3. Two Level Mixed Linear Model 

To perform an analysis using a mixed linear model, the data used must have at least two data 

levels. The first level of longitudinal data is repeated observations of the research unit. For the unit-

ith to time study t, the linear relationship between the explanatory 𝑧𝑖𝑡  and response variables 𝑦𝑖𝑡  can 

be written as follow [2]: 

𝑦𝑖𝑡 = 𝛽0𝑖 + 𝛽1𝑖𝑧𝑖𝑡 + 𝜀𝑖𝑡  (4) 

The response variable at level one is modeled as a function of time and the within subject residual 

component.[4]. The residual component in the first level model is assumed to be normally distributed 

with zero mean and variance 𝑹𝑖 = 𝑣𝑎𝑟(𝜀𝑖𝑡) . Each research unit on longitudinal data has a unique 

intercept and slope. Therefore the intercept and slope of the first level model are allowed to vary 

according to the research unit through the notation 𝛽0𝑖 and 𝛽1𝑖  . The second level of the model 

represents the next level of data, namely the research unit. By adding the predictor factor 𝑥𝑖  , a 

second-level model is created with the specification of random effects for both the intercept and for 

the slope: 

𝛽0𝑖 = 𝛽00 + 𝛽01𝑥𝑖 + 𝛼0𝑖 (5) 

𝛽1𝑖 = 𝛽10 + 𝛽11𝑥𝑖 + 𝛼1𝑖 (6) 

Added predictor factors were defined as between-subject variables. Variations between research 

units that occur in the intercept and slope are assumed to be related to predictor factors 𝑥𝑖 . The 

subject-specific intercept (𝛽0𝑖) for the study unit is related to the overall intercept or average intercept 

(𝛽00) and the random effect (𝛼0𝑖) is related to the intercept. While the subject-specific slope (𝛽1𝑖) is 

related to the overall slope (𝛽10) and the random effect (𝛼1𝑖) is related to the slope. The random terms 

added to the second level model are 𝛼0𝑖 and 𝛼1𝑖 which are the random effects for the intercept and 

slope. This random effect is assumed to be 𝜶𝑖~𝑵(0, 𝑫) 

Combining the second-order model in equations (5) and (6) to the first-order model in equation 

(4) will produce a two-level mixed linear model: 

𝑦𝑖𝑡  = (𝛽00 + 𝛽01𝑥𝑖 + 𝛼0𝑖) + (𝛽10 + 𝛽11𝑥𝑖 + 𝛼1𝑖)𝑧𝑖𝑡 + 𝜀𝑖𝑡  

 = 𝛽00 + 𝛽01𝑥𝑖 + 𝛼0𝑖 + 𝛽10𝑧𝑖𝑡 + 𝛽11𝑥𝑖𝑧𝑖𝑡 + 𝛼1𝑖𝑧𝑖𝑡 + 𝜀𝑖𝑡 (7) 

Define 𝜶𝑖 = (𝛼0𝑖 𝛼1𝑖)′ , 𝒛𝑖𝑡 = (1 𝑧𝑖𝑡)′  , 𝜷 = (𝛽00 𝛽10 𝛽01 𝛽11)′  and 𝒙𝑖𝑡 =

(1 𝑥𝑖 𝑧𝑖𝑡 𝑥𝑖 × 𝑧𝑖𝑡)′ , then a two-level mixed linear model can be written in general form 

𝒚𝑖𝑡 = 𝒙𝑖𝑡
′ 𝜷 + 𝒛𝑖𝑡

′ 𝜶𝑖 + 𝜺𝑖𝑡 (8) 

or in matrix form it can be written as in equation (3). 

 

4. Covariance Matrix Structure 

One of the advantages of LMM is modeling the structure of the covariance matrix of data which 

is denoted by R , because the covariance matrix determines the pattern of autocorrelation between 

residual components [4]. Observations at any time have a unique variance and covariance. The 
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covariance structure is the pattern in the covariance matrix. Some of these patterns appear frequently 

in several statistical procedures and so these patterns have names. The three most simple and 

commonly used covariance structures in conducting longitudinal data analysis using a mixed model 

are: first, the diagonal matrix structure or also known as the independent matrix structure assumes 

the error term associated with observations in the same research unit is uncorrelated and has the 

same variance, second, the Compound Symmetry (CS) covariance structure assumes that all variances 

over time are constant, with correlations between observations also constant, and third, unstructured 

covariance (UN). The structure of covariance matrix is in Table 1.  

 

Table 1.Type of the covariance matrix 

Type Matrix 𝑹 Number of Parameter  

Diagonal  

(

𝜎2

 

0
𝜎2

 

⋯

⋱  

0
⋮
0

𝜎2

) 

1 

Compound Symmetry 

(CS) 𝜎2 (

1

 

𝜌
1

 

⋯

⋱  

𝜌
⋮
𝜌
1

) 

2 

Unstructured (UN) 

(

𝜎1
2

𝜎21

⋮
𝜎𝑇𝑖1

 

𝜎12

𝜎2
2

⋮
𝜎𝑇𝑖2

 

⋯
⋯
⋱
⋯

 

𝜎1𝑇𝑖

𝜎2𝑇𝑖

⋮
𝜎𝑇𝑖

2

) 

𝑇𝑖(𝑇𝑖 + 1)/2 

 

5. Parameter Estimation 

The mixed linear model contained in equation (3) can be seen as a marginal linear model as follows 

[6]: 

𝒀𝑖 = 𝑿𝑖𝜷 + 𝜺𝑖
∗ (10) 

With 𝜺𝑖
∗ = 𝒁𝑖𝜶𝑖 + 𝜺𝑖 . The residuals 𝜺𝑖

∗ are assumed to be 𝜺𝑖
∗~𝑁(0, 𝑽𝑖) . The covariance matrix 𝑽𝑖 is 

defined as 𝑽𝑖 = 𝑉𝑎𝑟(𝒚𝑖) = 𝒁𝑖𝑫𝒁𝑖
′ + 𝑹𝑖[2]. The estimation of the fixed effect parameters in the mixed 

linear model is carried out using the marginal model approach for convenience. Longitudinal data with 

the marginal model approach defines the marginal distribution of the vector 𝒀𝑖  as follows 

𝒀𝑖~𝑁(𝑿𝜷, 𝒁𝑖𝑫𝒁𝑖
′ + 𝑹𝑖) (11) 

MLE is a method used to obtain an estimator by optimizing the natural logarithm of its likelihood 

function. The log likelihood function for is 𝒚𝑖~𝑁(𝑿𝜷, 𝑽𝑖) 

𝑙(𝜷, 𝜽|𝒚) == −
1

2
𝑛 ln(2𝜋) −

1

2
ln|𝑽(𝜽)| −

1

2
(𝒚 − 𝑿𝜷)′𝑽(𝜽)−1(𝒚 − 𝑿𝜷) 

(12) 

Looking for the optimal solution to the fixed effect parameters, the estimation results are:𝜷 

�̂� = (𝑿′𝑽(𝜽)−1𝑿)−1𝑿′𝑽(𝜽)−1𝑦 (13) 

The estimation results �̂� still depend on the covariance parameter 𝜽  that needs to be estimated. 

Covariance parameter estimation is carried out using the REML method which will be done with R 

software. 
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Analysis Step 

The steps that must be taken to estimate all parameters contained in a two-level mixed linear 
model: 
1. To simplify the estimation process, modify the two-level mixed linear model into a single mixed 

linear model. 
𝒚 = 𝑿𝜷 + 𝒁𝜶 + 𝜺 

2. Assume so 𝜶~𝑁(𝟎, 𝑫), 𝜺~𝑁(𝟎, 𝑹) so that 𝒚~𝑁(𝑿𝜷, 𝑽 = 𝒁𝑫𝒁′ + 𝑹) 
3. Estimating the fixed effect parameters 𝜷  using the maximum likelihood method with the 

following steps: 
1) The form of the likelihood function derived from the normal distribution density 

function, 𝒚~𝑁(𝑿𝜷, 𝑽) 

𝐿(𝜷, 𝜽|𝒚) = (2𝜋)−
𝑛

2|𝑽(𝜽)|−
1

2 exp (−
1

2
(𝒚 − 𝑿𝜷)′𝑽(𝜽)−1(𝒚 − 𝑿𝜷)) 

2) The form of the log likelihood function 

ln (𝐿) = −
1

2
𝑛 ln(2𝜋) −

1

2
ln|𝑽(𝜽)| −

1

2
(𝒚 − 𝑿𝜷)′𝑽(𝜽)−1(𝒚 − 𝑿𝜷) 

3) Assume 𝜽 it is known 
4) Optimize the log likelihood function against 𝜷 

𝜕𝑙

𝜕𝜷
= 𝑿′𝑽(𝜽)−1𝒚 − 𝑿′𝑽(𝜽)−1𝑿𝜷 

5) Adjust 
𝜕𝑙

𝜕𝜷
= 0 so that a closed solution is obtained for �̂� 

𝑿′𝑽(𝜽)−1𝒚 − 𝑿′𝑽(𝜽)−1𝑿𝜷 = 0 
𝑿′𝑽(𝜽)−1𝑿𝜷 = 𝑿′𝑽(𝜽)−1𝒚 

�̂� = (𝑿′𝑽(𝜽)−1𝑿)−1𝑿′𝑽(𝜽)−1𝒚 
4. Estimating the covariance parameter using the REML and Newton Raphson methods with the 

following steps:  
1) Determine the structure of the matrix 𝑫 and 𝑹 the matrix that will be used so that the right 

assumptions are obtained. 
2) For  matrix 𝑫 and 𝑹 standard structures, the following assumptions are obtained: 

𝜶~𝑁(0, 𝜎𝑖
2𝑰𝑞𝑖

) 

𝜺~𝑁(0, 𝜎𝜀
2𝑰𝑇𝑖

) 

So obtained 𝑽 = 𝒁𝒊𝑫𝒁𝒊
′ + 𝑹 = ∑ 𝒁𝑖

𝑞
𝑖=1 𝒁𝑖

′𝜎𝑖
2 + 𝜎𝜀

2𝑰𝑇𝑖
 

3) Suppose 𝜶0 = 𝜺, 𝑞0 = 𝑇𝑖, dan 𝒁0 = 𝑰𝑇𝑖
 , then 

𝑽 = ∑ 𝒁𝑖

𝑞

𝑖=0
𝒁𝑖

′𝜎𝑖
2 

4) To overcome biased estimation of the covariance parameter using ML, error contrast 𝑲′𝑿 =
𝟎 will be used to 𝒚~𝑁(𝑿𝜷, 𝑽 obtain it 

𝑲′𝒚~𝑁(𝟎, 𝑲′𝑽𝑲) 
5) The form of the REML function which is a derivative of the likelihood function by replacing 

the variables with their error contrasts, namely: replace 𝒚  with 𝑲′𝒚  , 𝑿 with 𝑲’𝑿 = 𝟎  , 
𝒁 with ,  𝑲’𝒁and 𝑽 with𝑲’𝑽𝑲 

𝑙𝑅𝐸𝑀𝐿 = −
1

2
(𝑁 − 𝑟) ln(2𝜋) −

1

2
ln|𝑲′𝑽𝑲| −

1

2
𝒚′𝑲(𝑲′𝑽𝑲)−1𝑲′𝒚 

6) Optimize against 𝑙𝑅𝐸𝑀𝐿𝜎𝑖
2 

𝜕𝑙𝑅𝐸𝑀𝐿

𝜕𝜎𝑖
2  = −

1

2
𝑡𝑟[(𝑲′𝑽𝑲)−1𝑲′𝒁𝑖𝒁𝑖

′𝑲] −
1

2
𝒚′(−1)𝑷𝒁𝑖𝒁𝑖

′𝑷𝒚 

 
= −

1

2
𝑡𝑟(𝑷𝒁𝑖𝒁𝑖

′) +
1

2
𝒚′𝑷𝒁𝑖𝒁𝑖

′𝑷𝒚 

with 𝑷 = 𝑽−1 − 𝑽−1𝑿(𝑿′𝑽−1𝑿)−1𝑿′𝑽−1 
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7) The optimal solution can be found using iterative methods. The iterative method that will 

be used is the Newton Raphson method which has the following iterations:𝜎𝑖
2 

�̂�(𝑚+1) = �̂�(𝑚) − (𝑯(�̂�)(𝑚))
−1

𝛁𝑓(�̂�)(𝑚) 

with 𝑚 = 0,1,2, … 
8) Find the second derivative 𝑙𝑅𝐸𝑀𝐿 from point 5) to form the Hessian matrix to be used in the 

Newton Raphson algorithm 
𝜎2𝑙𝑅𝐸𝑀𝐿

𝜕𝜎𝑖
2𝜎𝑗

2 =
1

2
𝑡𝑟(𝑷𝒁𝑗𝒁𝑗

′𝑷𝒁𝑖𝒁𝑖
′) − 𝒚′𝑷𝒁𝑗𝒁𝑗

′𝑷𝒁𝑖𝒁𝑖
′𝑷𝒚 

Where𝑷 = 𝑽−1 − 𝑽−1𝑿(𝑿′𝑽−1𝑿)−1𝑿′𝑽−1 

9) Iteration in point 7) will stop when |�̂�(𝑚) − �̂�(𝑚+1)| it converges. 

5. Estimating random effect parameters 𝜶 using the ML method with the following steps:𝜶 
1) The form of the likelihood function derived from the combined probability density function 

𝒚 and 𝜶 

𝐿(𝒚, 𝜶) = |𝑹|−
1

2|𝑫|−
1

2exp {−
1

2
[(𝒚 − 𝑿𝜷 − 𝒁𝜶)′𝑹−1(𝒚 − 𝑿𝜷 − 𝒁𝜶) + 𝜶′𝑫−1𝜶]}  

2) The form of the log likelihood function 
𝑙(𝒚, 𝜶) = ln [𝐿(𝒚, 𝜶)]  

 = |𝑹| + |𝑫| + (𝒚 − 𝑿𝜷 − 𝒁𝜶)′𝑹−1(𝒚 − 𝑿𝜷 − 𝒁𝜶) + 𝜶′𝑫−1𝜶 
 = |𝑹| + |𝑫| + 𝒚′𝑹−1𝒚 − 2𝒚′𝑹−1𝑿𝜷 − 2𝒚′𝑹−1𝒁𝜶

+ 𝜷′𝑿′𝑹−1𝑿𝜷 + 2𝜷′𝑿′𝑹−1𝒁𝜶 + 𝜶′𝒁′𝑹−1𝒁𝜶
+ 𝜶′𝑫−1𝜶 

3) Find the partial derivative of the log likelihood function with respect to the parameters 𝜶 

𝜕𝑙(𝒚, 𝜶)

𝜕𝜶
= 𝒁′𝑹−1𝒚 − 𝒁′𝑹−1𝑿𝜷 − 𝒁′𝑹−1𝒁𝜶 − 𝑫−1𝜶  

4) Make the equation in point 3) equal to zero by using to show the solution�̂� 

𝒁′𝑹−1𝑿𝜷 + 𝒁′𝑹−1𝒁�̂� + 𝑫−1�̂� = 𝒁′𝑹−1𝒚 
𝒁′𝑹−1𝑿𝜷 + (𝒁′𝑹−1𝒁 + 𝑫−1)�̂� = 𝒁′𝑹−1𝒚 

(𝒁′𝑹−1𝒁 + 𝑫−1)�̂� = 𝒁′𝑹−1𝒚 − 𝒁′𝑹−1𝑿𝜷 
(𝒁′𝑹−1𝒁 + 𝑫−1)�̂� = 𝒁′𝑹−1(𝒚 − 𝑿𝜷) 

�̂� = (𝒁′𝑹−1𝒁 + 𝑫−1)−1𝒁′𝑹−1(𝒚 − 𝑿𝜷) 
 = 𝑫𝒁′(𝒁𝑫𝒁′ + 𝑹)−1(𝒚 − 𝑿𝜷) 
 = 𝑫𝒁′𝑽−1(𝒚 − 𝑿𝜷) 

Where 𝑽 = 𝒁𝑫𝒁′ + 𝑹 

5) Replace 𝜷  with the estimation results, namely �̂� those obtained from (13) so that the 
estimation results (predictions) of the random effect are 

�̂� = 𝑫𝒁′𝑽−1
(𝒚 − 𝑿�̂�)  

 

Case Study and Results Analysis 
The case study was conducted using Health Index data by district and city in West Java Province 

from 2016 to 2021. The data used is secondary data obtained from the West Java Health Service and 
the West Java Central Bureau of Statistics. The Health Index is one of the basic dimensions that builds 
the Human Development Index (IPM). HDI is an important indicator to measure success in efforts to 
build the quality of human life in a region and country. HDI is strategic data because a part used  
measure  government performance, the level of the Health Index in an area can be seen from 
indicators of longevity and healthy life, which are calculated by looking at the AHH variable (life 
expectancy), with the formula: 

 

𝐻𝑒𝑎𝑙𝑡ℎ 𝐼𝑛𝑑𝑒𝑥 =
𝐴𝐻𝐻 − 𝐴𝐻𝐻𝑚𝑖𝑛

𝐴𝐻𝐻𝑚𝑎𝑥 − 𝐴𝐻𝐻𝑚𝑖𝑛
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Data obtained from West Java data in figures for 2016 and 2021 are used as part of a longitudinal 
study of 27 regions in West Java. Regions are divided into two groups, namely City and Regency areas. 
The aim of the study was to assess the effect of regional and time category factors on the trajectory 
of the development of the health index in each region, and whether there were any differences 
between the two regions and the development of the index values over time in the 2016-2021 period.  

Exploration was carried out on the subject profile and mean profile. The subject profile shows 
the observed subject values as a function of time for each subject at the regional level. While the mean 
profile shows the average by regional group. The subject profile results in the appearance of a variety 
of changes in response and the effect of changes in time on the response in each observed data and 
the mean profile results in the appearance of trends in the observed data. From these two 
explorations, considerations were obtained to determine whether the data tended to be linear or not, 
whether intercepts and slopes were treated as random effects or fixed effects, and whether there was 
an effect of changes in time on the response for construct model  at a later stage. 

Changes in the value of the Health index for each district and city in West Java can be seen in 
Figure 1, which shows that in general the index numbers have increased from time to time, both for 
quite significant increases and gradual increases. It can also be seen that the health index for the city 
area 3 is the highest among the 24 other urban district areas, as for the lowest health index in the 3 
district areas. 

 

 
Figure 1.  Trend of City District Health Index in West Java 

 

The trend shown in Figure 1 shows that each study unit has a unique intercept and slope, 

therefore the intercept and slope or time slope will be treated as random effects. 
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Figure 2. Average City Health Index in West Java 

Mean profile shown in Figure 2 shows that the average value of the index generally increases 

with time, with a trend that tends to be linear for all urban districts. This suggests that the model for 

predicting the health index includes a linear fixed effect of the year variable and a possible interaction 

between the linear effect of time and region groups. 

The model to be formed is a hierarchical model that has two components that reflect the 

contributions of two levels, namely time at the first level and cities at the second level. The first-level 

model denotes a subject-specific linear regression model for the health index based on time (Year) as 

the first factor. The intercept (𝛽0𝑖) and the time slope (𝛽1𝑖) vary between cities given index i. first-level 

model can be written as follows: 

𝐼𝐾𝑖𝑡 = 𝛽0𝑖 + 𝛽1𝑖𝑌𝐸𝐴𝑅𝑖𝑡 + 𝜀𝑖𝑡  (4.1) 

with 𝜀𝑖𝑡~𝑁(0, 𝑹) 

In the second-level model, the unobserved subject-specific coefficients for the intercept and 

time slope in the first-level model varied. The intercept and slope of time at the level depend on the 

fixed effect associated with an additional predictor factor at level two namely REGION as the second 

factor and random subject effect. 

𝛽0𝑖 = 𝛽00 + 𝛽01𝑅𝐸𝐺𝐼𝑂𝑁𝑖 + 𝛼0𝑖 

𝛽1𝑖 = 𝛽10 + 𝛽11𝑅𝐸𝐺𝐼𝑂𝑁𝑖 + 𝛼1𝑖 (4.2) 

where  𝜶𝑖 = (
𝛼0𝑖

𝛼1𝑖
) ~𝑁(0, 𝑫). The two-level model shows that the intercept(𝛽0𝑖) for a 𝑖 city depends 

on the overall intercept (𝛽00), the fixed effect (𝛽01) of the area predictor factors, and the random 

effect  (𝛼0𝑖) associated with the 𝑖 city. The time slope(𝛽1𝑖) depends on the overall time slope(𝛽10), the 

region fixed effect (𝛽11) , and the random effect (𝛼1𝑖) associated with the i city. The random effect in 
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the second-order model allows for city-specific intercepts and the time slope effect to vary randomly 

between cities. 

The overall model is by substituting equation (4.2) into equation (4.1). From the results of 

substitution of the second-level model to the first-level model, we will get the general form of a two-

level mixed linear model for the i-th subject health index at and t-th time (t = 0, 1, 2, 3, 4, 5) at period 

2016 - 2021. 

 

𝐼𝐾𝑖𝑡 = 𝛽00 + 𝛽01𝑅𝐸𝐺𝐼𝑂𝑁𝑖 + 𝛽10𝑌𝐸𝐴𝑅𝑖𝑡 + 𝛽11𝑅𝐸𝐺𝐼𝑂𝑁𝑖𝑌𝐸𝐴𝑅𝑖𝑡

+𝛼0𝑖 + 𝛼1𝑖𝑅𝐸𝐺𝐼𝑂𝑁𝑖𝑡 + 𝜀𝑖𝑡  (4.3)
 

 

The parameters 𝛽00, 𝛽01, 𝛽10 and 𝛽11 represent the fixed effects associated with the intercept, 

area variable, year variable, and interaction term in the model, respectively. The parameter 𝛽10 

represents the fixed effect 𝛽11 of time for the reference category of the region group (region = 1). The 

fixed effect .𝛽01  represents the difference in intercept for the first level of the region group by 

reference category. The fixed effect represents the difference in the year linear effect between the 

first level of region groups and the linear effect year within the area group reference category. The 

terms 𝛼0𝑖 and 𝛼1𝑖 in the first-level model represent the random effects associated with the intercept 

and the time linear effects for subjects-i. While the terms 𝜀𝑖𝑡  in the first-level model are residues 

related to observations on the subject-𝑖 at time-𝑡 

To complete the estimation of fixed effect parameters 𝜷 in the model from the case study, the 

calculations were carried out in accordance to the previous steps, with calculations using the Rstudio 

software, the following results are obtained: 

Using the help of software R, the estimated fixed effect parameters for 𝜷 =

(𝛽00 𝛽10 𝛽01 𝛽11)′ each residual covariance matrix structure 𝑹 are obtained in Table 2 below: 
 

Table 2. Fixed effect parameter estimation result 

Residual Covariance Matrix 
Structure (R) 

Parameter Type 
Estimation 

Results 

Diagonal Fixed Effect Parameters  

 β00 (Intercept) 78,435 
 β10 (YEAR) 0.287 
 β01 (REGION) 2,566 
 β11 (REGIONAL × YEAR) -0.058 
   

The random effect parameter 𝜶𝑖 = (𝛼0𝑖 𝛼1𝑖)′was also estimated or predicted from the random 

effect 𝜶𝑖 of the two-level mixed linear model as shown in Table 3.   

 

Table 3. Random effect parameter estimation results 

Region ID 
�̂�0𝑖 �̂�1𝑖 

Region ID 
�̂�0𝑖 

�̂�1𝑖 
 

1 0 -0.616 -0.055 16 0 3,417 -0.104 
2 0 -1,378 0.049 17 0 1,194 -0.061 
3 0 -2,539 0.014 18 0 -0.942 0.092 
4 0 3.155 -0.089 19 1 0.364 0.046 
5 0 -0.425 -0.019 20 1 -1,239 -0.008 
6 0 -3,804 0.072 21 1 1730 -0.032 
7 0 -0.157 0.063 22 1 -1,368 -0.030 
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Region ID 
�̂�0𝑖 �̂�1𝑖 

Region ID 
�̂�0𝑖 

�̂�1𝑖 
 

8 0 2,677 0.033 23 1 2,879 -0.034 
9 0 0.595 -0.046 24 1 2,000 -0.037 

10 0 -2,763 0.109 25 1 1,346 -0.032 
11 0 1,404 -0.075 26 1 -2,034 0.079 
12 0 -0.464 0.065 27 1 -3,678 0.049 
13 0 0.882 0.016     
14 0 -1,077 -0.016     
15 0 0.842 -0.048     

 

A two-level mixed linear model is used to predict the value of the Health Index in West Java Province 

based on the district/city area factors and the time trend of index achievement. From the calculation 

results, a predictive model for the Health Index (IK) value for cities at time that depends on the 

random linear time effect is obtained as follows:𝑖𝑡 

 

1. Marginal Prediction Model 

𝐼𝐾𝑖𝑡 = 78.44 + (2.57 ∗ 𝑅𝐸𝐺𝐼𝑂𝑁𝑖) + (0.29 ∗ 𝑌𝐸𝐴𝑅𝑖𝑡) 

       −(0.06 ∗ 𝑅𝐸𝐺𝐼𝑂𝑁𝑖 ∗ 𝑌𝐸𝐴𝑅𝑖𝑡) 

The marginal prediction model shows that in general the intercept will be the same for all cities 

at a certain REGION level, but the trajectory of each city will be different because of the random linear 

time effects that are included in the model. For districts and cities, a marginal prediction model can 

be obtained by making a dummy variable for the district to have a value of 0, and the city to have a 

value of 1, with each model as follows: 

a. Marginal prediction model for district (area = 0) 

IKit = 78.44 + (0.29*YEARit) 

b. Marginal prediction model for city (area = 1) 

IKit = 81.01 + (0.23*YEARit) 

Prediction of the marginal health index values for districts and cities can be seen in Fig 3. below: 

 
Figure 3. Prediction of Marginal Health Index for West Java Regencies and Cities 
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2. Conditional Prediction Model 

𝐼𝐾𝑖𝑡 = 78.44 + (2.57 ∗ 𝑅𝐸𝐺𝐼𝑂𝑁𝑖) + (0.29 ∗ 𝑌𝐸𝐴𝑅𝑖𝑡) 

                          −(0.06 ∗ 𝑅𝐸𝐺𝐼𝑂𝑁𝑖 ∗ 𝑌𝐸𝐴𝑅𝑖𝑡) + �̂�0𝑖 + (�̂�1𝑖 × 𝑌𝐸𝐴𝑅𝑖𝑡) 

 

In the average model or marginal model, the intercept and slope of each region are the same. 

But in the random effects model, the intercept and slope are different for each subject. Random effect 

𝛼0𝑖  and 𝛼1𝑖describes the difference between the intercept and slope values of the fixed values for 

the average intercept and slope. For districts and cities, a marginal prediction model can be obtained 

by making a dummy variable for the district to have a value of 0, and the city to have a value of 1, with 

each model as follows:  

a. Marginal prediction model for district (area = 0) 

𝐼𝐾𝑖𝑡 = 78.44 + (0.29 + 𝛼1𝑖)𝑌𝐸𝐴𝑅𝑖𝑡 + 𝛼0𝑖 

b. Marginal prediction model for city (area = 1) 

𝐼𝐾𝑖𝑡 = 81.01 + (0.23 + 𝛼1𝑖)𝑌𝐸𝐴𝑅𝑖𝑡 + 𝛼0𝑖 

For the i-th city, the predicted �̂�0𝑖 and �̂�1𝑖 appropriate values can be seen in Table 2. 

 

Figure 4 shows a graph of subject-specific conditional predictive values where there are 

additional changes originating from each subject for the Health Index values of 27 districts and cities 

in West Java. 

 
Figure 4. Specific Conditional Prediction of Health Index 

Regency and City of West Java 
 

To test the fit of the model used the coefficient of determination (𝑅2) used to test the suitability 

of the model. The model fit test was carried out to determine the effect of the variables in the model 

on the response variable. The results of the calculation of the coefficient of determination (𝑅2) for 

each model are presented in Table 4.  
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Table 4. Match test value 𝑅2 

Covariance 

Matrix 

Structure (R) 

Fixed Effects Random Effects 

Fixed Effects 

R2 

(𝑅𝐹
2) 

Random 

Effects R2 

(𝑅𝑇
2) 

Diagonal Region+Year Intercepts+Slopes 0.739 0.906 

 

The coefficient of determination 𝑅𝐹
2 for models with fixed effects or marginal models provides 

information on the variance explained only by fixed effects, whereas the coefficient of determination 

𝑅𝑇
2  for models with fixed effects and random effects or conditional models provides information on 

the variance explained by the entire model, that is, fixed effects and random effects. From the value 

of the coefficient of determination, the result shows that the value of the health index is explained by 

each of the fixed variables, namely region and year, which is 73.97%. While the fit test for the model 

with the overall effect 𝑅𝑇
2 = 0.906 means that the variation in the value of the Health Index in West 

Java is explained by the area variable and the year variable as a fixed effect and the area taking variable 

is considered as a random effect of 90.6%. 

 

Conclusion 

The two-level mixed linear model provides information with a level one describing the trajectory 

of each unit of research as a function of time and random error which is assumed to be normally 

distributed N(0,R), whereas a level two represents the group category parameters as functions of fixed 

effects and random errors also assuming to be distributed normally N (0,D). This study modeled 

random effects on level one using diagonal or independent covariance matrix structures.  

This two-stage mixed linear model was implemented in the analysis of how regional and time 

differences influenced the value of the Health Index in West Java, using health index panel data from 

27 regions in Western Java during the period 2016-2021, which is divided into two groups, namely city 

and district regions. The methods used to perform the estimation process are the Maximum Likelihood 

method and the Restricted Maximum Lieklihood method. The estimate of a model with a diagonal 

covariance matrix structure was obtained: 

 

𝐼𝐾𝑖𝑡 = 78.44 + (2.57 ∗ 𝑅𝐸𝐺𝐼𝑂𝑁𝑖) + (0.29 ∗ 𝑌𝐸𝐴𝑅𝑖𝑡)   − (0.06 ∗ 𝑅𝐸𝐺𝐼𝑂𝑁𝑖 ∗ 𝑌𝐸𝐴𝑅𝑖𝑡) + �̂�0𝑖

+ (�̂�1𝑖 × 𝑌𝐸𝐴𝑅𝑖𝑡) 

 

Research can be developed with other covarince matrix structures with longer panel data and more 

other variables. 

 

Reference 

[1] E. W. Frees, "Longitudinal and Panel Data Analysis and Applications" In The Social Sciences. 

New York: Cambridge University Press, 2004. 

[2] C. Angelini, "Regression analysis",  Vol. 1–3. Elsevier Ltd., 2018. 

[3] N. Pandis, “Cross-sectional studies,”Am. J. Orthod. Dentofac. Orthops., vol. 146, no. 1, pp. 127–

129, 2014. 

[4] S. Searle, G. Casella, and C. McCulloh,"Variance Components", New Jersey: A John Wiley & 

Sons, Inc., 2006. 

[5] N. H. Pusponegoro, R. N. Rachmawati, K. A. Notodiputro and B. Sartono, “Linear Mixed Model 

for Analyzing Longitudinal Data: A Simulation Study of Children Growth Differences”, 

Procedia Comput. sci., Vol. 116,  pp. 284–291, 2017. 



A. S. Awalluddin, et al.                                   Panel Data Analysis of Two Level Mixed Linear 
Models… 

e-ISSN: 2686-0341     p-ISSN: 2338-0896 
 

59 

[6] S. Ross, "Introduction to Probability and Statistics for Engineers and Scientists", Sixth Edit. 

London: Katey Birtcher, 2021. 

[7] H. Liu, Y. Zheng, and J. Shen, “Goodness-of-fit measures of R2 for repeated measures mixed 

effect models,”J. Appl. Stats., Vol. 35, No. 10, pp. 1081–1092, 2008. 

[8] A. C. Rencher and G. B. Schaalje, "Linear Models in Statistics", Second Edition, Vol. 84, No. 

500, New Jersey: John Wiley & Sons, Inc., 2000. 

[9] F. N. Gumedze and T. T. Dunne, “Parameter estimation and inference in the linear mixed model”, 

Linear Algebra Appl., Vol. 435, No. 8,  pp. 1920–1944, 2011. 

[10] X. Liu, "Methods and applications of longitudinal data analysis", Elsevier Inc., 2015. 

[11] J. Hilbe and A. Robinson, "Methods of Statistical Model Estimation",  Boca Raton: CRC Press, 

2013. 

[12] B. West, K. Welch, and A. Gałecki, "Linear Mixed Models A Practical Guide Using Statistical 

Software", Second Edition, vol. 53, no. 9,  Boca Raton: CRC Press, 2015. 

[13] B. West, K. Welch, and A. Gałecki, "Linear Mixed Models A Practical Guide Using Statistical 

Software", Second. Boca Raton: CRC Press, 2015. 

[14] J. W. Wu, "The Quasi-Likelihood Estimation In Regression", Ann. Inst. Statist. Math., Vol. 48, 

No. 2, pp. 283-294, 1996. 

[15] P. Widyaningsih, DRS. Saputro  and  A.N. Putri,  "Fisher Scoring Method for Parameter 

Estimation of Geographically Weighted Ordinal Logistic Regression (GWOLR) Mode", Journal 

of Physics: Conf. Series, Vol. 855, No.1, p. 012060 2017. 

[16] B. P. Carlin and T. A. Louis, "Bayes and Empirical Bayes Methods for Data Analysis, Second 

Edition", Boca Raton: CRC Press, 2000. 

[17] N. Saputri, B. N. Ruchjana and E. S. Hasbullah,  "Penerapan Model Regresi Data Panel pada 

Faktor Fundamental dan Teknikal Harga Saham Sektor Industri Real Estate", Kubik: Jurnal 

Publikasi Ilmiah Matematika, Vol. 5, No. 1, pp. 10-19, 2020. 

[18] R. Rahmadeni, and N. Nurjannah, "Model Tingkat Kemiskinan di Kabupaten/Kota Provinsi 

Riau: Menggunakan Regresi Data Panel", KUBIK: Jurnal Publikasi Ilmiah Matematika, Vol.6, 

No. 2, pp. 98-109, 2021. 

[19] D. F. Durrah, R. Cahyandari and A. S. Awalluddin, "Model regresi data panel terbaik untuk 

faktor penentu laba neto perusahaan asuransi umum Syariah di Indonesia", KUBIK: Jurnal 

Publikasi Ilmiah Matematika, Vol.5, No. 1,  p. 27-34, 2020. 

 

 

 


