Karakteristik pencapaian kemampuan pembuktian dan kepercayaan diri mahasiswa melalui metode moore
DOI:
https://doi.org/10.15575/ja.v4i2.3681Abstract
Pembuktian dalam matematika adalah suatu aktivitas yang penting, tetapi aktivitas ini tergolong sulit bagi mahasiswa calon guru matematika. Masalah ini salah satunya dipengaruhi oleh kepercayaan-diri. Tujuan penelitian ini adalah untuk menganalisis karakteristik pencapaian kemampuan pembuktian matematis dan kepercayaan-diri mahasiswa melalui metode Moore. Penelitian ini menggunakan metode campuran bertahap yaitu tahap kuantitatif dan tahap kualitatif. Pada tahap kuantitatif disimpulkan bahwa kemampuan pembuktian pada kelas yang menggunakan metode Moore lebih baik daripada kelas yang menggunakan model pembelajaran langsung. Metode Moore dapat mengungkap proses perkembangan capaian pembelajaran mahasiswa dalam pembuktian, sehingga dosen dapat memberikan umpan balik untuk mengembangkannya. Pada tahap kualitatif, dihasilkan karakteristik kemampuan pembuktian beberapa mahasiswa. Karakteristik ini ditinjau berdasarkan respon mahasiswa terhadap masalah pembuktian. Pada pembelajaran dengan metode Moore, mahasiswa tidak diperbolehkan membuka bahan ajar, sehingga dosen harus mengikuti alur berpikir mahasiswa dan mengarahkan proses berpikirnya. Sebagai implikasi, metode Moore baik digunakan dengan catatan mahasiswa harus belajar terlebih dahulu sebelum pembelajaran di kelas.
Â
Characteristics of achievement of proof ability and student confidence through the Moore method
Proving in mathematics is an important activity, but this activity is classified as difficult for prospective mathematics teacher students. This problem is influenced by self-confidence.The purpose of this study was to analyze the characteristics of achievement of students' mathematical proving ability and self-confidence through the Moore method.This study uses a phased mixed method, namely quantitative and qualitative stages. In the quantitative stage, it was concluded that the ability to prove the class using the Moore method is better than the class that uses the direct learning model. Moore's method can reveal the process of developing student learning outcomes in proof, so that lecturers can provide feedback to develop it. In the qualitative stage, the characteristics of the ability of several students are produced. these characteristics are reviewed based on student responses to the problem of proof.In the Moore method of learning, students are not allowed to open teaching materials, so the lecturer must follow the flow of student thinking and direct the thinking process. As an implication, the Moore method is well used with the notes that students must study before learning in class
Â
References
Villiers, M. (1990). ‘The Role and Function af Proof in Mathematics’, Pythagoras 24, 17–24.
NCTM. (2000). Principles and Standards for School Mathematics. Reston, V. A.: The National Council of Teachers of Mathematics, Inc.
Hanna, G. (1990). Some Pedagogical Aspects of Proof. Interchange, 21(1), hlm. 6-13.
Harel, G. (2008). DNR Perspective on Mathematics Curriculum and Instruction, Part I: Focus on Proving. Zentralblatt fuer Didaktik der Mathematik, 40, 487-500.
Jones, K. (2000). The Student Experience of Mathematical Proof at University Level. International Journal of Mathematical Education in Science and Technology, 31(1) 53-60.
Stylianides, G.J., Stylianides, A.J. & Traina, L.N.S. (2013). Prospective Teachers’ Challenges In Teaching Reasoning-And-Proving. International Journal of Science and Mathematics Education, 11, 1463-1490.
Slamet. (2003). Belajar dan Faktor-Faktor yang Mempengaruhinya. Jakarta: Rineka Cipta.
Soemanto, W. (2006). Psikologi Pendidikan (Landasan Kerja Pemimpin Pendidikan). Jakarta: Rineka Cipta.
Maya, R & Sumarmo, U. (2011). Mathematical Understanding and Proving Abilities: Experiment With Undergraduate Student By Using Modified Moore Learning Approach. IndoMS. J.M.E Vol. 2 No. 2 July 2011, pp. 231-250.
Joanna Allan. (1996). Learning outcomes in higher education. Studies in Higher Education, 21:1, 93-108, DOI: 10.1080/03075079612331381487.
Good, C. (2006). Teaching by the Moore Method. MSOR Connections , 6 (2), 1-5.
Cohen, D. (1982). A Modified Moore Method for Teaching Underguate Mathematics. The Mathematical Monthly , 89 (7), 473-474, 487-490.
Solow, D. (2014). How to Read and Do Proofs (Sixth Edition ed.). (S. Corliss, Penyunt.) Cleveland, Amerika Serikat: John Wiley&Sons, Inc.
Downloads
Published
Issue
Section
License
Authors who publish in Jurnal Analisa agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
3.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).