Kemampuan generalisasi mahasiswa pada perkuliahan kapita selekta matematika sma
DOI:
https://doi.org/10.15575/ja.v4i2.3926Abstract
Generalisasi adalah detak jantung matematika, dan muncul dalam berbagai bentuk. Sayangnya itu digunakan dalam ukuran yang sangat rendah dalam pendidikan. Generalisasi sangat penting bagimatematika sehingga banyak profesional tidak lagi memperhatikannyakarena bagi mereka hal itu adalah dasar. Tapi justru pergeseran perhatian para ahli telah terintegrasi ke dalam pemikiran pemula.Generalisasi dalam pembelajaran matematik merupakan hal yang penting karena mengajarkan tentang jenis situasi dimana konsep ini dapat diterapkan, dan mendorong siswa untuk mencari situasi lain yang dapat mereka terapkan. Jika guru tidak menyadari kehadirannya, dan tidak terbiasa membuat siswa bekerja untuk mengekspresikan generalisasi mereka sendiri, maka pemikiran matematis tidak akan terjadi. Mahasiswa pendidikan matematika tentunya harus memiliki kemampuan generalisasi, selain akan menghadapi berbagai mata kuliah-mata kuliah matematika, dimana salah satu aspek yang paling penting dalam pemikiran matematis. Mahasiswa pendidikan matematika juga sebagai calon guru matematika harus mengembangkan pembelajaran yang dapat meningkatkan kemampuan generalisasi. Tujuan penelitian ini untuk mendeskripsikan kemampuan generalisasi mahasiwa pada perkuliahan kapita selekta matematika sma dan kesulitan yang dihadapi mahasiwadalam menyelesaikan soal-soal kemampuan generalisasi.Penelitian ini dilaksanakan dengan metode studi kasus dimana peneliti melakukan ekplorasi mendalam terhadap satu atau lebih orang. Penelitian ini akan dilaksanakan di Program Studi Pendidikan Matematika FKIP Universitas Suryakancana. Dari hasil penelitian ini diketahui bahwa: Kemampuan generalisasi mahasiswa pendidikan matematika berada pada kategori rendah dalam beberapa tahapan generalisasi, yaitu kesulitan mengenali pola, menuliskan pola atau aturan dalam bahasa verbal, dan memformulasikan pola atau aturan dalam bahasa simbolik.
Â
The generalization ability of students in the Kapita Selekta matematika course in senior high school
Generalization is a mathematical heartbeat and appears in various forms. Unfortunately, it is used in a very low measure in education. Generalization is very important for mathematics so that many professionals no longer pay attention to it because for them it is basic. But precisely the shift in the attention of experts has been integrated into the beginner's thinking. Generalization in mathematical learning is important because it teaches about the types of situations in which this concept can be applied, and encourages students to look for other situations that they can apply. If the teacher is not aware of his presence and is not used to making students work to express their own generalizations, mathematical thinking will not occur. Mathematics education students certainly must have generalization skills, in addition to facing various mathematics courses, which are one of the most important aspects of mathematical thinking. Students of mathematics education, as well as prospective mathematics teachers, must develop learning that can improve generalization skills. The purpose of this study is to describe the ability of generalizations of students in the lecture on the subject of high school mathematics and the difficulties faced by students in solving generalization skills. This study was conducted with a case study method in which researchers conduct in-depth exploration of one or more people. This research will be carried out in the Mathematics Education Study Program FKIP Suryakancana University. From the results of this study it is known that: The generalization ability of mathematics education students is in the low category in several stages of generalization, namely difficulty recognizing patterns, writing patterns or rules in verbal language, and formulating patterns or rules in symbolic language.
References
De Ley, Logan. (2012). Generalization: Making Learning More than a “Classroom Exerciseâ€. https://www.scilearn.com/sites/default/files/pdf/ whitepaper/generalizationwhitepaper_2016-10-12.pdf. (18 Desember 2017)
Isoda, M., dan Katagiri, Shigeo. (2012). Mathematical Thinking How to Develop it in the Classroom. Singapore: World Scientific Publishing Co. Pte. Ltd
Lee, Lesley. (1996). An Initiation Into Algebraic Culture Through Generalization Activities. In N. Bednarz, C. Kieran, & L. Lee (Eds.), Approaches to Algebra: Perspectives for Research and Teaching (pp. 87-106), Dordrecht: Kluwer Academic Publishers.
Mason, J. (1996). Expressing Generality and Roots of Algebra. In N. Bednarz, C. Kieran, & L. Lee (Eds.), Approaches to Algebra: Perspectives for Research and Teaching (pp. 65-86), Dordrecht: Kluwer Academic Publishers.
Mofidi, Somayeh Amir, dkk. (2012). Instruction of Mathematical Concepts Through Analogical Reasoning Skills. Indian Journal of Science and Technology Vol. 5 No. 6.
National Council of Teachers of Mathematics (NCTM). (2000). Executive summary: Principles and standards for school mathematics. Reston, VA: NCTM. Available at http://www.nctm.org/uploadedFiles/Math_Standards/ 12752_exec_pssm.pdf. 16 April 2017
Shadiq, Fajar. (2013). Penalaran dengan Analogi? Pengertiannya dan Mengapa Penting?. http://p4tkmatematika.org/2013/12/penalaran-dengan-analogi-pengertiannya-dan-mengapa-penting/. (18 Desember 2017)
Whallen, Christian. (2009). The Importance of Generalization of Skills. https://www.pediastaff.com/resources-the-importance-of-generalization-of-skills--july-2009. (18 Desember 2017)
Downloads
Published
Issue
Section
License
Authors who publish in Jurnal Analisa agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
3.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).