Synthesis, Characterization of Polyvinyl Alcohol-Chitosan-ZnO/CuO Nanoparticles Film and Its Biological Evaluation as An Antibacterial Agent of Staphylococcus aureus


Ahmad Fatoni(1*), Mauizatul Hasanah(2), Lasmaryna Sirumapea(3), Annisa Defanie Putri(4), Khoirunnisa Sari(5), Restu Dwi Khairani(6), Nurlisa Hidayati(7)

(1) Department of Pharmacy, Bhakti Pertiwi College of Pharmacy, Indonesia
(2) Department of Pharmacy, Bhakti Pertiwi College of Pharmacy, Indonesia
(3) Department of Pharmacy, Bhakti Pertiwi College of Pharmacy, Indonesia
(4) Department of Pharmacy, Bhakti Pertiwi College of Pharmacy, Indonesia
(5) Department of Pharmacy, Bhakti Pertiwi College of Pharmacy, Indonesia
(6) Department of Pharmacy, Bhakti Pertiwi College of Pharmacy, Indonesia
(7) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Sriwijaya University, Indonesia
(*) Corresponding Author

Abstract


The polyvinyl alcohol-chitosan-ZnO/CuO nanoparticles film was researched. Synthesis, characterization, and its biological evaluation as an antibacterial of Staphylococcus aureus were the aims of this research. The biosynthesis of ZnO, CuO, and ZnO/CuO nanoparticles was done using the biological method. The polyvinyl alcohol-chitosan-ZnO/CuO nanoparticles film was synthesized using the casting method. All the products were characterized by FTIR spectroscopy, X-ray diffraction, and Scanning Electron Microscope (SEM). Polyvinyl alcohol-chitosan-ZnO/CuO nanoparticles film as a paper disk for the evaluation as an antibacterial agent through the agar disk diffusion method. The absorption bands of ZnO, CuO, and ZnO/CuO nanoparticles can be observed at 318, 274, and 252 nm, respectively. The peaks at wavenumbers 433-673 and 619 cm-1 were Zn-O and Cu-O groups, respectively. The Zn-O and Cu-O groups at ZnO/CuO nanoparticles can be observed at 474 and 619 cm-1. The appearance of Zn-O and Cu-O groups at film PVA-chitosan-ZnO/CuO nanoparticles indicates the wavenumber between 433 and 673 cm-1. The physical structure of ZnO, CuO, and ZnO/CuO nanoparticles is crystalline form. The crystallite size of ZnO, CuO, and ZnO/CuO nanoparticles was estimated at 1.0572, 6.6315, and 2.3333 nm respectively. The physical structure of film PVA-chitosan-ZnO/CuO nanoparticles is amorphous. The surface morphology of films C, D, and E was affected by the addition of chitosan and ZnO/CuO nanoparticles. The film of PVA-chitosan-ZnO/CuO nanoparticles (C, D and E) can act as an antibaterial agent of Staphylococcus aureus.The inhibition zone of film D is higher than A, B, C, and E.

Keywords


PVA-chitosan-ZnO/CuO nanoparticles film, characterization, Staphylococcus aureus

Full Text:

PDF

References


A.N. Ul Haq, A. Nadhman, I. Ullah, G.M. Mustafa, M. Yasinzai, and I. Khan, “Review article synthesis approaches of zinc oxide nanoparticles: The dilemma of ecotoxicity”. Hindawi J. Nanomater., 2017(12), 1-14, 2017, doi: 10.1155/2017/8510342.

K. Bloch, K. Pardesi, C. Satriano, and S. Ghosh, “Bacteriogenic platinum nanoparticles for application in nanomedicine”, Front. Chem., 9, 624344, 2021, doi: 10.3389/fchem.2021.624344.

D. Zhang, X.I. Ma, Y. Gu, H. Huang, and G.W. Zhang, “Green synthesis of metallic nanoparticles and their potential applications to treat cancer”, Front. Chem., 8, 799, 2020, doi: 10.3389/fchem.2020.00799.

N. Pantidos, and L.E. Horsfall, “Biological synthesis of metallic nanoparticles by bacteria, fungi and plants”. J. Nanomed.Nanotechnol., 5, 233, 2014, doi: 10.4172/2157-7439.1000233.

D. Letchumanan, S.P.M. Sok, S. Ibrahim, N.H. Nagoor, and N.M. Arshad, “Plant-based biosynthesis of copper/copper oxide nanoparticles: An update on their applications in biomedicine, mechanisms, and toxicity”, Biomolecules, 11(4), 564, 2021, doi: 10.3390/biom11040564.

B.N. Singh, A.K.S. Rawat, W. Khan, A.H. Naqvi, and B.R. Singh, “Biosynthesis of stable antioxidant ZnO Nanoparticles by Pseudomonas aeruginosa Rhamnolipids”, PLoS ONE, 9(9), e106937, 2014, doi: 10.1371/journal.pone.0106937.

V.N. Kalpana, B.A.S. Kataru, N. Sravani, T. Vigneshwari, A. Panneerselvam, and D. Rajeswari, “Biosynthesis of zinc oxide nanoparticles using culture filtrates of Aspergillus niger: Antimicrobial textiles and dye degradation studies”, OpenNano, 3, 48-55, 2018, doi: 10.1016/j.onano.2018.06.001.

K. Lingaraju, H.R. Naika, K. Manjunath, R.B. Basavaraj, H. Nagabhushana, G. Nagaraju, and D. Suresh, “Biogenic synthesis of zinc oxide nanoparticles using Ruta graveolens (L.) and their antibacterial and antioxidant activities”, Appl. Nanosci., 6, 703–710, 2016, doi: 10.1007/s13204-015-0487-6.

F.A. Jan, R. Wajidullah, N. Ullah, U. Ullah, S. Salman, and M. Usman, “Exploring the environmental and potential therapeutic applications of Myrtus communis L. assisted synthesized zinc oxide (ZnO) and iron doped zinc oxide (Fe-ZnO) nanoparticles”, J. Saudi Chem. Soc., 25(7), 101278, 2021, doi: 10.1016/j.jscs.2021.101278.

A. Fatoni, M.A. Afrizal, A.A., Rasyad, and N. Hidayati, “ZnO nanoparticles and its interaction with chitosan: Profile spectra and their activity against bacterial”, JKPK, 6(2), 216-227, 2021, doi: 10.20961/jkpk.v6i2.48000.

P. Khandel, R.K. Yadaw, D.K. Soni, L. Kanwar, and S.K. Shahi, “Biogenesis of metal nanoparticles and their pharmacological applications: present status and application prospects”, J. Nanostructure Chem., 8, 217–254, 2018, doi: 10.1007/s40097-018-0267-4.

N. Muhamad, N.A. Muhmed, M.M. Yusoff, and J. Gimbun, “Influence of solvent polarity and conditions on extraction of antioxidant, flavonoids and phenolic content from Averrhoa bilimb”, J.Food Sci. Eng., 4, 255-260, 2014, doi: 10.17265/2159-5828/2014.05.006

J.B. Harborne, I. Sudiro, K. Padmawinata, dan S. Niksolihin, “Metode fitokimia: penuntun cara modern menganalisis tumbuhan”. Bandung: Penerbit ITB, 2005.

S. Alamdari, M.S., Ghamsari, C. Lee, W. Han, H.H. Park, M.J. Tafreshi, H. Afarideh, and M.H.H. Ara, “Preparation and characterization of zinc oxide nanoparticles using leaf extract of Sambucus ebulus”, Appl. Sci., 10(10), 3620, 2020, doi: 10.3390/app10103620.

V.S. Chinni, S.C.B. Gopinath, P. Anbu, N.K. Fuloria, S. Fuloria, P. Mariappan, K. Krusnamurthy, L.V. Reddy, G. Ramachawolran, S. Sreeramanan, and S. Samuggam, “Characterization and antibacterial response of silver nanoparticles biosynthesized using an ethanolic extract of coccinia indica leaves”, Crystals, 11(2), 97, 2021, doi: 10.3390/cryst11020097.

I. Fatimah, “Biosynthesis and characterization of ZnO nanoparticles using rice bran extract as low-cost templating agent”, J. Eng. Sci.Technol., 13(2), 409–420, 2018.

A. Fatoni, R.A. Sriwijaya, U. Habiba, and N. Hidayati, “CuO nanoparticles: biosynthesis, characterization and in vitro study”, Sci. Technol. Indones, 6(1), 25–29, 2021, doi: 10.26554/sti.2021.6.1.25-29.

A. Fouda, S.S. Salem, A.R. Wassel, M.F. Hamza, and T.I. Shaheen, “Optimization of green biosynthesized visible light active CuO/ZnO nano-photocatalysts for the degradation of organic methylene blue dye”, Heliyon, 6(9), e04896, 2020, doi: 10.1016/j.heliyon.2020.e04896.

J.O. Adeyemi, D.C. Onwudiwe, and A.O. Oyede, “Biogenic synthesis of CuO, ZnO, and CuO–ZnO nanoparticles using leaf extracts of Dovyalis caffra and their biological properties”, Molecules, 27(10), 3206, 2022, doi: 10.3390/molecules27103206.

Y. Cao, H.A. Dhahad, M.A. El-Shorbagy, H. Q. Alijani, M. Zakeri, A. Heydari, E.M. Bahonar, M. Slouf, M. Khatami, M. Naderifar, S. Iravani, S. Khatami, and F.F. Dehkordi, “Green synthesis of bimetallic ZnO–CuO nanoparticles and their cytotoxicity properties”, Sci.Rep., 11, 23479, 2021, doi: 10.1038/s41598-021-02937-1.

D. Saravanakkumar, S. Sivaranjani, K. Kaviyarasu, A. Ayeshamariam, B. Ravikumar, S. Pandiarajan, C. Veeralakshmi, M. Jayachandran, and M. Maaza, “Synthesis and characterization of ZnO–CuO nanocomposites powder by modified perfume spray pyrolysis method and its antimicrobial investigation”, J. Semicond., 39(3), 033001-1-7, 2018, doi: 10.1088/1674-4926/39/3/032001.

G. Sharma, A. Kumar, S. Sharma, M. Naushad, R.P. Dwivedi, Z.A. AlOthman, and G.T. Mola, “Novel development of nanoparticles to bimetallic nanoparticles and their composites: A review”, J. King Saud Univ. Sci., 31, 257–269, 2019, doi: 10.1016/j.jksus.2017.06.012.

S.A. Agnihotri, N.N. Mallikarjuna, and T.M. Aminabhavi, “Recent advances on chitosan-based micro- and nanoparticles in drug delivery”, J.Controll. Release., 100, (1), 5–28, 2004, doi: 10.1016/j.jconrel.2004.08.010

S.K. Kim, and N. Rajapakse, “Enzymatic production and biological activities of chitosan oligosaccharides (COS): a review”, Carbohydr. Polym., 62(4), 357–368, 2005.

I. Aranaz, A.R. Alcántara, M.C. Civera, C. Arias, B. Elorza, A.H. Caballero, and N. Acosta,” Chitosan: an overview of its properties and applications”, Polymers, 13(19), 3256, 2021, doi: 10.3390/polym13193256.

A.M. Abdullah, S.B. Aziz, and S.R. Saeed, “Structural and electrical properties of polyvinyl alcohol (PVA): Methyl cellulose (MC) based solid polymer blend electrolytes inserted with sodium iodide (NaI) salt”, Arab. J. Chem., 14(103388), 2021, doi: 10.1016/j.arabjc.2021.103388.

T.A. Kareem, and A.A. Kaliani, “Synthesis and thermal study of octahedral silver nano-plates in polyvinyl alcohol (PVA)”, Arab. J. Chem., 4, 325–331, 2011, doi:10.1016/j.arabjc.2010.06.054

H. Isawi, “Using Zeolite/Polyvinyl alcohol/sodium alginate nanocomposite beads for removal of some heavy metals from wastewater”, Arab. J. Chem., 13, 5691–5716, 2020, doi: 10.1016/j.arabjc.2020.04.009.

F. Croisier, and C. Jérôme, “Chitosan-based biomaterials for tissue engineering”, Eur. Polym. J., 49, 780–792, 2013, doi: 10.1016/j.eurpolymj.2012.12.009.

H. Shawky, “Synthesis of ion-imprinting chitosan/PVA crosslinked membrane for selective removal of Ag(I)”. J. Appl.Polym. Sci., vol.114, no. 5, pp. 2608-2615, 2009, DOI:10.1002/app.30816

A. Kalia, M. Kaur, A. Shami, S.K. Jawandha, M.A. Alghuthaymi, A. Thakur, and K.A. Abd-Elsalam, “Nettle-leaf extract derived ZnO/CuO nanoparticle-biopolymer-based antioxidant and antimicrobial nanocomposite packaging films and their impact on extending the post-harvest shelf life of guava fruit”, Biomolecules, 11(2), 224, 2021, doi: 10.3390/biom 11020224.

A. Fatoni, H.S. Yessica, A. Aldilah, M. Almi, A. Rendowaty, R. Romsiah, L. Sirumapea, and N. Hidayati, “The film of chitosan-ZnO nanoparticles-CTAB: synthesis, characterization and in vitro study”, Sci. Technol. Indones., 7(1), 58-66, 2022, doi: 10.26554/sti.2022.7.1.58-66.

I. Isnaeni, E. Hendradi, and N.Z. Zettira, “Inhibitory effect of roselle aqueous extracts-HPMC 6000 gel on the growth of Staphylococcus aureus ATCC 25923”, Turk. J. Pharm. Sci., 17(2), 190-196, 2020, doi: 10.4274/tjps.galenos.2019.88709.

L. Joseph, M. George, G. Singh, and P. Mathews, P. “Phytochemical investigation on various parts of Psidium guajava”, Ann. Plant Sci., 5(2), 1265-1268, 2016, doi: 10.21746/aps.2016.02.001.

M.M.H. Khalil, E.H., Ismail, K.Z. El-Baghdady, and D. Mohamed, “Green synthesis of silver nanoparticles using olive leaf extract and its antibacterial activity”, Arab. J. Chem. 7, 1131-1139, 2014, doi: 10.1016/j.arabjc.2013.04.007.

P.G. Bhavyasree, and T. S. Xavier, “Green synthesis of copper oxide/carbon nanocomposites using the leaf extract of adhatoda vasica nees, their characterization and antimicrobial activity”, Heliyon, 6, e03323, 2020, doi: 10.1016/j.heliyon.2020.e03323.

A.E.D. Mahmoud, K.M. Al-Qahtani, S.O. Alflaij, S.F. Al-Qahtani, and F.A. Alsamhan, “Green copper oxide nanoparticles for lead, nickel, and cadmium removal from contaminated water”, Sci. Rep, 11(1), 12547, 2021, doi: 10.1038/s41598-021-91093-7.

M. Pandey, M. Singh, K. Wasnik, S. Gupta, S. Patra, P.S. Gupta, D. Pareek, N.S.N. Chaitanya, S. Maity, A.B.M. Reddy, R. Tilak, and P Paik, “Argeted and enhanced antimicrobial inhibition of mesoporous ZnO−Ag2O/Ag, ZnO−CuO, and ZnO−SnO2 composite nanoparticles”, ACS Omega, 6, 31615−31631, 2021.

N. Matinise, X.G. Fuku, K. Kaviyarasu, N. Mayedwa, and M. Maaza, “ZnO nanoparticles via Moringa oleifera green synthesis: Physical properties & mechanism of formation”, Appl. Surf. Sci., 406, 339–347, 2017, doi: 10.1016/j.apsusc.2017.01.219.

H. Hemalatha, and M. Makeswari, “Green synthesis, characterization and antibacterial studies of CuO nanoparticles from eichhornia crassipes”, Rasayan J. Chem. 10(3), 838-843, 2017, doi: 10.7324/RJC.2017.1031800.

D. Berra, S. Laouini, B. Benhaoua, M. Ouahrani, D. Berrani, and A. Rahal, “Green synthesis of copper oxide nanoparticles by Pheonix dactylifera L. leaves extract”, Dig. J. Nanomat. Biostructures., 13(4), 1231–1238, 2018.

M. Altikatoglu, A. Attar, F. Erci, C.M. Cristache, and I. Isildak, “Green synthesis of copper oxide nanoparticles using Ocimum basilicum extract and their antibacterial activity”, Fresenius Environ. Bull., 25(12), 7832–7837, 2017.

R. Dobrucka, and J. Dugaszewska, “Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium pratense flower extract”, Saudi J. Biol. Sci., 23, 517–523, 2016, doi: 10.1016/j.sjbs.2015.05.016.

S.S. Mydeen, R.R. Kumar, M. Kottaisamy, and V.S. Vasantha, “Biosynthesis of ZnO nanoparticles through extract from Prosopis juliflora plant leaf: Antibacterial activities and a new approach by rust-induced photocatalysis”, J. Saudi Chem. Soc., 24(5), 393-406, 2020, doi: 10.1016/j.jscs.2020.03.003.

M.A. Norouzi, M. Montazer, T. Harifi, and P. Karimi, “Flower buds like PVA/ZnO composite nanofibers assembly: Antibacterial, in vivo wound healing, cytotoxicity and histological studies”, Polym. Test., 93, 106914, 2021, doi: 10.1016/j.polymertesting.2020.106914.

S. Kumaraswamy, G. Babaladimath, V. Badalamoole, and S. H. Mallaiah, “Gamma irradiation synthesis and in vitro drug release studies of ZnO/PVA hydrogel nanocomposites”, Adv. Mater. Lett., 8(4), 546-552, 2017, doi: 10.5185/amlett.2017.6819.

R.A. Krishnan, O. Mhatre, J. Sheth, S. Prabhu, R. Jain, and P. Dandekar, “Synthesis of zinc oxide nanostructures using orange peel oil for fabricating chitosan-zinc oxide composite films and their antibacterial activity”, J. Polym. Res., 27, 206, 2020, doi: 10.1007/s10965-020-2033-9.

A. Annu, A. Akbar, and S. Ahmed, “Eco-friendly natural extract loaded antioxidative chitosan/polyvinyl alcohol based active films for food packaging”, Heliyon, 7, e06550, 2021, doi: 10.1016/j.heliyon.2021.e06550.

D.S. Vicentini, A. Smania Jr, and M.C.M. Laranjeira, “Chitosan/poly (vinyl alcohol) films containing ZnO nanoparticles and plasticizers”, Mater. Sci.Eng. C., 30, 503–508, 2010, doi:10.1016/j.msec.2009.01.026.

E. Prokhorov, G.L. Bárcenas, J.M.Y. Limón, A.G. Sánchez, and Y. Kovalenko, “Chitosan-ZnO nanocomposites assessed by dielectric, mechanical, and piezoelectric properties”, Polymers, 12(9), 1991, 2020, doi:10.3390/polym12091991.

K.S. Castillo, D.D.A.Lopez, A. M.T. Huerta, M.A.D. Crespo, D.P. Ramı´rez, H. Willcock, and S.B.B. Sibaja, “Effect on the processability, structure and mechanical properties of highly dispersed in situ ZnO:CS nanoparticles into PVA electrospun fibers”, J. Mater. Res. Technol., 11, 929-945, 2021.

K. Nithyaa, and S. Kalyanasundharam, S. “Effect of chemically synthesis compared to biosynthesized ZnO nanoparticles using aqueous extract of C. halicacabum and their antibacterial activity”, OpenNano, 4, 100024, 2019, doi: 10.1016/j.onano.2018.10.001.

H.C.A. Murthy, T.D. Zeleke, K.B. Tan, S. Ghotekar, M.W. Alam, R. Balachandran, K.Y. Chan, P.F. Sanaulla, M.R.A. Kumar, and C.R. Ravikumar, “Enhanced multifunctionality of CuO nanoparticles synthesized using aqueous leaf extract of Vernonia amygdalina plant”, Results Chem., 3, 100141, 2021, doi: 10.1016/j.rechem.2021.100141

A. Chinnathambi, and T.A. Alahmadi, “Zinc nanoparticles green-synthesized by Alhagi maurorum leaf aqueous extract: Chemical characterization and cytotoxicity, antioxidant, and anti-osteosarcoma effects”, Arab. J. Chem. 14, 103083, 2021, doi: 10.1016/j.arabjc.2021.103083.

S. Logpriya, V. Bhuvaneshwari, D. Vaidehi, R.P.S. Kumar, R.S.N. Malar, B.P. Sheetal, R. Asmaveni, and M. Kalaiselvi, “Preparation and characterization of ascorbic acid-mediated chitosan–copper oxide nanocomposite for anti-microbial, sporicidal and biofilm-inhibitory activity”, J .Nanostruct. Chem., 8, 301–309, 2018, doi: 10.1007/s40097-018-0273-6.

C. Leonardelli, W.P. Silvestre, and C. Baldasso,”Effect of chitosan addition in whey-based biodegradable film”, Braz. Arch. Biol. Technol., 63(6), e20200178, 2020, doi: 10.1590/1678-4324-2020200178

E. Susilowati, S.R.D. Ariani, L. Mahardiani, and L. Izzati, “Synthesis and characterization chitosan film with silver nanoparticle addition as a multiresistant antibacterial material”, JKPK., 6(3), 371-383, 2021, https://jurnal.uns.ac.id/jkpk.

R.C. Goy, D. de Britto, and O.B.G. Assis, “A review of the antimicrobial activity of chitosan”, Polímeros: Ciência e Tecnologia, 19(3), 241-247, 2009, doi: 10.1590/S0104-14282009000300013.

S.A. Akintelu, and A.S. Folorunso, “A review on green synthesis of zinc oxide nanoparticles using plant extracts and its biomedical applications”. Bionanoscience,, 10(6-s), 2020, doi: 10.1007/s12668-020-00774-6.

R. Dadi, R. Azouani, M. Traore, C. Mielcarek, and A. Kanaev, “Antibacterial activity of ZnO and CuO nanoparticles against gram positive and gram negative strains”, Mater. Sci. Eng. C, 104, 109968, 2019, doi: 10.1016/j.msec.2019.109968.

G.K. Weldegebrieal, “Synthesis method, antibacterial and photocatalytic activity of ZnO nanoparticles for azo dyes in wastewater treatment: A review”, Inorg. Chem. Commun., 120, 108140, 2020, doi: 10.1016/j.inoche.2020.108140.

A. Al Baroot, M. Alheshibri, Q. A. Drmosh, S. Akhtar, E. Kotb, and K.A. Elsayed, “A novel approach for fabrication ZnO/CuO nanocomposite via laser ablation in liquid and its antibacterial activity”, Arab. J. Chem., 15(2), 103606, 2022, doi: 10.1016/j.arabjc.2021.103606.




DOI: https://doi.org/10.15575/ak.v10i1.24725

Copyright (c) 2023 Ahmad Fatoni

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

CrossrefSINTAGoogle ScholarIndonesia One Search

View My Stats

 

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.