Synthesis, Characterization of Polyvinyl Alcohol-Chitosan-ZnO/CuO Nanoparticles Film and Its Biological Evaluation as An Antibacterial Agent of Staphylococcus aureus

Authors

  • Ahmad Fatoni Department of Pharmacy, Bhakti Pertiwi College of Pharmacy, Indonesia
  • Mauizatul Hasanah Department of Pharmacy, Bhakti Pertiwi College of Pharmacy, Indonesia
  • Lasmaryna Sirumapea Department of Pharmacy, Bhakti Pertiwi College of Pharmacy, Indonesia
  • Annisa Defanie Putri Department of Pharmacy, Bhakti Pertiwi College of Pharmacy, Indonesia
  • Khoirunnisa Sari Department of Pharmacy, Bhakti Pertiwi College of Pharmacy, Indonesia
  • Restu Dwi Khairani Department of Pharmacy, Bhakti Pertiwi College of Pharmacy, Indonesia
  • Nurlisa Hidayati Department of Chemistry, Faculty of Mathematics and Natural Sciences, Sriwijaya University, Indonesia

DOI:

https://doi.org/10.15575/ak.v10i1.24725

Keywords:

PVA-chitosan-ZnO/CuO nanoparticles film, characterization, Staphylococcus aureus

Abstract

The polyvinyl alcohol-chitosan-ZnO/CuO nanoparticles film was researched. Synthesis, characterization, and its biological evaluation as an antibacterial of Staphylococcus aureus were the aims of this research. The biosynthesis of ZnO, CuO, and ZnO/CuO nanoparticles was done using the biological method. The polyvinyl alcohol-chitosan-ZnO/CuO nanoparticles film was synthesized using the casting method. All the products were characterized by FTIR spectroscopy, X-ray diffraction, and Scanning Electron Microscope (SEM). Polyvinyl alcohol-chitosan-ZnO/CuO nanoparticles film as a paper disk for the evaluation as an antibacterial agent through the agar disk diffusion method. The absorption bands of ZnO, CuO, and ZnO/CuO nanoparticles can be observed at 318, 274, and 252 nm, respectively. The peaks at wavenumbers 433-673 and 619 cm-1 were Zn-O and Cu-O groups, respectively. The Zn-O and Cu-O groups at ZnO/CuO nanoparticles can be observed at 474 and 619 cm-1. The appearance of Zn-O and Cu-O groups at film PVA-chitosan-ZnO/CuO nanoparticles indicates the wavenumber between 433 and 673 cm-1. The physical structure of ZnO, CuO, and ZnO/CuO nanoparticles is crystalline form. The crystallite size of ZnO, CuO, and ZnO/CuO nanoparticles was estimated at 1.0572, 6.6315, and 2.3333 nm respectively. The physical structure of film PVA-chitosan-ZnO/CuO nanoparticles is amorphous. The surface morphology of films C, D, and E was affected by the addition of chitosan and ZnO/CuO nanoparticles. The film of PVA-chitosan-ZnO/CuO nanoparticles (C, D and E) can act as an antibaterial agent of Staphylococcus aureus.The inhibition zone of film D is higher than A, B, C, and E.

References

A.N. Ul Haq, A. Nadhman, I. Ullah, G.M. Mustafa, M. Yasinzai, and I. Khan, “Review article synthesis approaches of zinc oxide nanoparticles: The dilemma of ecotoxicityâ€. Hindawi J. Nanomater., 2017(12), 1-14, 2017, doi: 10.1155/2017/8510342.

K. Bloch, K. Pardesi, C. Satriano, and S. Ghosh, “Bacteriogenic platinum nanoparticles for application in nanomedicineâ€, Front. Chem., 9, 624344, 2021, doi: 10.3389/fchem.2021.624344.

D. Zhang, X.I. Ma, Y. Gu, H. Huang, and G.W. Zhang, “Green synthesis of metallic nanoparticles and their potential applications to treat cancerâ€, Front. Chem., 8, 799, 2020, doi: 10.3389/fchem.2020.00799.

N. Pantidos, and L.E. Horsfall, “Biological synthesis of metallic nanoparticles by bacteria, fungi and plantsâ€. J. Nanomed.Nanotechnol., 5, 233, 2014, doi: 10.4172/2157-7439.1000233.

D. Letchumanan, S.P.M. Sok, S. Ibrahim, N.H. Nagoor, and N.M. Arshad, “Plant-based biosynthesis of copper/copper oxide nanoparticles: An update on their applications in biomedicine, mechanisms, and toxicityâ€, Biomolecules, 11(4), 564, 2021, doi: 10.3390/biom11040564.

B.N. Singh, A.K.S. Rawat, W. Khan, A.H. Naqvi, and B.R. Singh, “Biosynthesis of stable antioxidant ZnO Nanoparticles by Pseudomonas aeruginosa Rhamnolipidsâ€, PLoS ONE, 9(9), e106937, 2014, doi: 10.1371/journal.pone.0106937.

V.N. Kalpana, B.A.S. Kataru, N. Sravani, T. Vigneshwari, A. Panneerselvam, and D. Rajeswari, “Biosynthesis of zinc oxide nanoparticles using culture filtrates of Aspergillus niger: Antimicrobial textiles and dye degradation studiesâ€, OpenNano, 3, 48-55, 2018, doi: 10.1016/j.onano.2018.06.001.

K. Lingaraju, H.R. Naika, K. Manjunath, R.B. Basavaraj, H. Nagabhushana, G. Nagaraju, and D. Suresh, “Biogenic synthesis of zinc oxide nanoparticles using Ruta graveolens (L.) and their antibacterial and antioxidant activitiesâ€, Appl. Nanosci., 6, 703–710, 2016, doi: 10.1007/s13204-015-0487-6.

F.A. Jan, R. Wajidullah, N. Ullah, U. Ullah, S. Salman, and M. Usman, “Exploring the environmental and potential therapeutic applications of Myrtus communis L. assisted synthesized zinc oxide (ZnO) and iron doped zinc oxide (Fe-ZnO) nanoparticlesâ€, J. Saudi Chem. Soc., 25(7), 101278, 2021, doi: 10.1016/j.jscs.2021.101278.

A. Fatoni, M.A. Afrizal, A.A., Rasyad, and N. Hidayati, “ZnO nanoparticles and its interaction with chitosan: Profile spectra and their activity against bacterialâ€, JKPK, 6(2), 216-227, 2021, doi: 10.20961/jkpk.v6i2.48000.

P. Khandel, R.K. Yadaw, D.K. Soni, L. Kanwar, and S.K. Shahi, “Biogenesis of metal nanoparticles and their pharmacological applications: present status and application prospectsâ€, J. Nanostructure Chem., 8, 217–254, 2018, doi: 10.1007/s40097-018-0267-4.

N. Muhamad, N.A. Muhmed, M.M. Yusoff, and J. Gimbun, “Influence of solvent polarity and conditions on extraction of antioxidant, flavonoids and phenolic content from Averrhoa bilimbâ€, J.Food Sci. Eng., 4, 255-260, 2014, doi: 10.17265/2159-5828/2014.05.006

J.B. Harborne, I. Sudiro, K. Padmawinata, dan S. Niksolihin, “Metode fitokimia: penuntun cara modern menganalisis tumbuhanâ€. Bandung: Penerbit ITB, 2005.

S. Alamdari, M.S., Ghamsari, C. Lee, W. Han, H.H. Park, M.J. Tafreshi, H. Afarideh, and M.H.H. Ara, “Preparation and characterization of zinc oxide nanoparticles using leaf extract of Sambucus ebulusâ€, Appl. Sci., 10(10), 3620, 2020, doi: 10.3390/app10103620.

V.S. Chinni, S.C.B. Gopinath, P. Anbu, N.K. Fuloria, S. Fuloria, P. Mariappan, K. Krusnamurthy, L.V. Reddy, G. Ramachawolran, S. Sreeramanan, and S. Samuggam, “Characterization and antibacterial response of silver nanoparticles biosynthesized using an ethanolic extract of coccinia indica leavesâ€, Crystals, 11(2), 97, 2021, doi: 10.3390/cryst11020097.

I. Fatimah, “Biosynthesis and characterization of ZnO nanoparticles using rice bran extract as low-cost templating agentâ€, J. Eng. Sci.Technol., 13(2), 409–420, 2018.

A. Fatoni, R.A. Sriwijaya, U. Habiba, and N. Hidayati, “CuO nanoparticles: biosynthesis, characterization and in vitro studyâ€, Sci. Technol. Indones, 6(1), 25–29, 2021, doi: 10.26554/sti.2021.6.1.25-29.

A. Fouda, S.S. Salem, A.R. Wassel, M.F. Hamza, and T.I. Shaheen, “Optimization of green biosynthesized visible light active CuO/ZnO nano-photocatalysts for the degradation of organic methylene blue dyeâ€, Heliyon, 6(9), e04896, 2020, doi: 10.1016/j.heliyon.2020.e04896.

J.O. Adeyemi, D.C. Onwudiwe, and A.O. Oyede, “Biogenic synthesis of CuO, ZnO, and CuO–ZnO nanoparticles using leaf extracts of Dovyalis caffra and their biological propertiesâ€, Molecules, 27(10), 3206, 2022, doi: 10.3390/molecules27103206.

Y. Cao, H.A. Dhahad, M.A. El-Shorbagy, H. Q. Alijani, M. Zakeri, A. Heydari, E.M. Bahonar, M. Slouf, M. Khatami, M. Naderifar, S. Iravani, S. Khatami, and F.F. Dehkordi, “Green synthesis of bimetallic ZnO–CuO nanoparticles and their cytotoxicity propertiesâ€, Sci.Rep., 11, 23479, 2021, doi: 10.1038/s41598-021-02937-1.

D. Saravanakkumar, S. Sivaranjani, K. Kaviyarasu, A. Ayeshamariam, B. Ravikumar, S. Pandiarajan, C. Veeralakshmi, M. Jayachandran, and M. Maaza, “Synthesis and characterization of ZnO–CuO nanocomposites powder by modified perfume spray pyrolysis method and its antimicrobial investigationâ€, J. Semicond., 39(3), 033001-1-7, 2018, doi: 10.1088/1674-4926/39/3/032001.

G. Sharma, A. Kumar, S. Sharma, M. Naushad, R.P. Dwivedi, Z.A. AlOthman, and G.T. Mola, “Novel development of nanoparticles to bimetallic nanoparticles and their composites: A reviewâ€, J. King Saud Univ. Sci., 31, 257–269, 2019, doi: 10.1016/j.jksus.2017.06.012.

S.A. Agnihotri, N.N. Mallikarjuna, and T.M. Aminabhavi, “Recent advances on chitosan-based micro- and nanoparticles in drug deliveryâ€, J.Controll. Release., 100, (1), 5–28, 2004, doi: 10.1016/j.jconrel.2004.08.010

S.K. Kim, and N. Rajapakse, “Enzymatic production and biological activities of chitosan oligosaccharides (COS): a reviewâ€, Carbohydr. Polym., 62(4), 357–368, 2005.

I. Aranaz, A.R. Alcántara, M.C. Civera, C. Arias, B. Elorza, A.H. Caballero, and N. Acosta,†Chitosan: an overview of its properties and applicationsâ€, Polymers, 13(19), 3256, 2021, doi: 10.3390/polym13193256.

A.M. Abdullah, S.B. Aziz, and S.R. Saeed, “Structural and electrical properties of polyvinyl alcohol (PVA): Methyl cellulose (MC) based solid polymer blend electrolytes inserted with sodium iodide (NaI) saltâ€, Arab. J. Chem., 14(103388), 2021, doi: 10.1016/j.arabjc.2021.103388.

T.A. Kareem, and A.A. Kaliani, “Synthesis and thermal study of octahedral silver nano-plates in polyvinyl alcohol (PVA)â€, Arab. J. Chem., 4, 325–331, 2011, doi:10.1016/j.arabjc.2010.06.054

H. Isawi, “Using Zeolite/Polyvinyl alcohol/sodium alginate nanocomposite beads for removal of some heavy metals from wastewaterâ€, Arab. J. Chem., 13, 5691–5716, 2020, doi: 10.1016/j.arabjc.2020.04.009.

F. Croisier, and C. Jérôme, “Chitosan-based biomaterials for tissue engineeringâ€, Eur. Polym. J., 49, 780–792, 2013, doi: 10.1016/j.eurpolymj.2012.12.009.

H. Shawky, “Synthesis of ion-imprinting chitosan/PVA crosslinked membrane for selective removal of Ag(I)â€. J. Appl.Polym. Sci., vol.114, no. 5, pp. 2608-2615, 2009, DOI:10.1002/app.30816

A. Kalia, M. Kaur, A. Shami, S.K. Jawandha, M.A. Alghuthaymi, A. Thakur, and K.A. Abd-Elsalam, “Nettle-leaf extract derived ZnO/CuO nanoparticle-biopolymer-based antioxidant and antimicrobial nanocomposite packaging films and their impact on extending the post-harvest shelf life of guava fruitâ€, Biomolecules, 11(2), 224, 2021, doi: 10.3390/biom 11020224.

A. Fatoni, H.S. Yessica, A. Aldilah, M. Almi, A. Rendowaty, R. Romsiah, L. Sirumapea, and N. Hidayati, “The film of chitosan-ZnO nanoparticles-CTAB: synthesis, characterization and in vitro studyâ€, Sci. Technol. Indones., 7(1), 58-66, 2022, doi: 10.26554/sti.2022.7.1.58-66.

I. Isnaeni, E. Hendradi, and N.Z. Zettira, “Inhibitory effect of roselle aqueous extracts-HPMC 6000 gel on the growth of Staphylococcus aureus ATCC 25923â€, Turk. J. Pharm. Sci., 17(2), 190-196, 2020, doi: 10.4274/tjps.galenos.2019.88709.

L. Joseph, M. George, G. Singh, and P. Mathews, P. “Phytochemical investigation on various parts of Psidium guajavaâ€, Ann. Plant Sci., 5(2), 1265-1268, 2016, doi: 10.21746/aps.2016.02.001.

M.M.H. Khalil, E.H., Ismail, K.Z. El-Baghdady, and D. Mohamed, “Green synthesis of silver nanoparticles using olive leaf extract and its antibacterial activityâ€, Arab. J. Chem. 7, 1131-1139, 2014, doi: 10.1016/j.arabjc.2013.04.007.

P.G. Bhavyasree, and T. S. Xavier, “Green synthesis of copper oxide/carbon nanocomposites using the leaf extract of adhatoda vasica nees, their characterization and antimicrobial activityâ€, Heliyon, 6, e03323, 2020, doi: 10.1016/j.heliyon.2020.e03323.

A.E.D. Mahmoud, K.M. Al-Qahtani, S.O. Alflaij, S.F. Al-Qahtani, and F.A. Alsamhan, “Green copper oxide nanoparticles for lead, nickel, and cadmium removal from contaminated waterâ€, Sci. Rep, 11(1), 12547, 2021, doi: 10.1038/s41598-021-91093-7.

M. Pandey, M. Singh, K. Wasnik, S. Gupta, S. Patra, P.S. Gupta, D. Pareek, N.S.N. Chaitanya, S. Maity, A.B.M. Reddy, R. Tilak, and P Paik, “Argeted and enhanced antimicrobial inhibition of mesoporous ZnO−Ag2O/Ag, ZnO−CuO, and ZnO−SnO2 composite nanoparticlesâ€, ACS Omega, 6, 31615−31631, 2021.

N. Matinise, X.G. Fuku, K. Kaviyarasu, N. Mayedwa, and M. Maaza, “ZnO nanoparticles via Moringa oleifera green synthesis: Physical properties & mechanism of formationâ€, Appl. Surf. Sci., 406, 339–347, 2017, doi: 10.1016/j.apsusc.2017.01.219.

H. Hemalatha, and M. Makeswari, “Green synthesis, characterization and antibacterial studies of CuO nanoparticles from eichhornia crassipesâ€, Rasayan J. Chem. 10(3), 838-843, 2017, doi: 10.7324/RJC.2017.1031800.

D. Berra, S. Laouini, B. Benhaoua, M. Ouahrani, D. Berrani, and A. Rahal, “Green synthesis of copper oxide nanoparticles by Pheonix dactylifera L. leaves extractâ€, Dig. J. Nanomat. Biostructures., 13(4), 1231–1238, 2018.

M. Altikatoglu, A. Attar, F. Erci, C.M. Cristache, and I. Isildak, “Green synthesis of copper oxide nanoparticles using Ocimum basilicum extract and their antibacterial activityâ€, Fresenius Environ. Bull., 25(12), 7832–7837, 2017.

R. Dobrucka, and J. Dugaszewska, “Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium pratense flower extractâ€, Saudi J. Biol. Sci., 23, 517–523, 2016, doi: 10.1016/j.sjbs.2015.05.016.

S.S. Mydeen, R.R. Kumar, M. Kottaisamy, and V.S. Vasantha, “Biosynthesis of ZnO nanoparticles through extract from Prosopis juliflora plant leaf: Antibacterial activities and a new approach by rust-induced photocatalysisâ€, J. Saudi Chem. Soc., 24(5), 393-406, 2020, doi: 10.1016/j.jscs.2020.03.003.

M.A. Norouzi, M. Montazer, T. Harifi, and P. Karimi, “Flower buds like PVA/ZnO composite nanofibers assembly: Antibacterial, in vivo wound healing, cytotoxicity and histological studiesâ€, Polym. Test., 93, 106914, 2021, doi: 10.1016/j.polymertesting.2020.106914.

S. Kumaraswamy, G. Babaladimath, V. Badalamoole, and S. H. Mallaiah, “Gamma irradiation synthesis and in vitro drug release studies of ZnO/PVA hydrogel nanocompositesâ€, Adv. Mater. Lett., 8(4), 546-552, 2017, doi: 10.5185/amlett.2017.6819.

R.A. Krishnan, O. Mhatre, J. Sheth, S. Prabhu, R. Jain, and P. Dandekar, “Synthesis of zinc oxide nanostructures using orange peel oil for fabricating chitosan-zinc oxide composite films and their antibacterial activityâ€, J. Polym. Res., 27, 206, 2020, doi: 10.1007/s10965-020-2033-9.

A. Annu, A. Akbar, and S. Ahmed, “Eco-friendly natural extract loaded antioxidative chitosan/polyvinyl alcohol based active films for food packagingâ€, Heliyon, 7, e06550, 2021, doi: 10.1016/j.heliyon.2021.e06550.

D.S. Vicentini, A. Smania Jr, and M.C.M. Laranjeira, “Chitosan/poly (vinyl alcohol) films containing ZnO nanoparticles and plasticizersâ€, Mater. Sci.Eng. C., 30, 503–508, 2010, doi:10.1016/j.msec.2009.01.026.

E. Prokhorov, G.L. Bárcenas, J.M.Y. Limón, A.G. Sánchez, and Y. Kovalenko, “Chitosan-ZnO nanocomposites assessed by dielectric, mechanical, and piezoelectric propertiesâ€, Polymers, 12(9), 1991, 2020, doi:10.3390/polym12091991.

K.S. Castillo, D.D.A.Lopez, A. M.T. Huerta, M.A.D. Crespo, D.P. Ramı´rez, H. Willcock, and S.B.B. Sibaja, “Effect on the processability, structure and mechanical properties of highly dispersed in situ ZnO:CS nanoparticles into PVA electrospun fibersâ€, J. Mater. Res. Technol., 11, 929-945, 2021.

K. Nithyaa, and S. Kalyanasundharam, S. “Effect of chemically synthesis compared to biosynthesized ZnO nanoparticles using aqueous extract of C. halicacabum and their antibacterial activityâ€, OpenNano, 4, 100024, 2019, doi: 10.1016/j.onano.2018.10.001.

H.C.A. Murthy, T.D. Zeleke, K.B. Tan, S. Ghotekar, M.W. Alam, R. Balachandran, K.Y. Chan, P.F. Sanaulla, M.R.A. Kumar, and C.R. Ravikumar, “Enhanced multifunctionality of CuO nanoparticles synthesized using aqueous leaf extract of Vernonia amygdalina plantâ€, Results Chem., 3, 100141, 2021, doi: 10.1016/j.rechem.2021.100141

A. Chinnathambi, and T.A. Alahmadi, “Zinc nanoparticles green-synthesized by Alhagi maurorum leaf aqueous extract: Chemical characterization and cytotoxicity, antioxidant, and anti-osteosarcoma effectsâ€, Arab. J. Chem. 14, 103083, 2021, doi: 10.1016/j.arabjc.2021.103083.

S. Logpriya, V. Bhuvaneshwari, D. Vaidehi, R.P.S. Kumar, R.S.N. Malar, B.P. Sheetal, R. Asmaveni, and M. Kalaiselvi, “Preparation and characterization of ascorbic acid-mediated chitosan–copper oxide nanocomposite for anti-microbial, sporicidal and biofilm-inhibitory activityâ€, J .Nanostruct. Chem., 8, 301–309, 2018, doi: 10.1007/s40097-018-0273-6.

C. Leonardelli, W.P. Silvestre, and C. Baldasso,â€Effect of chitosan addition in whey-based biodegradable filmâ€, Braz. Arch. Biol. Technol., 63(6), e20200178, 2020, doi: 10.1590/1678-4324-2020200178

E. Susilowati, S.R.D. Ariani, L. Mahardiani, and L. Izzati, “Synthesis and characterization chitosan film with silver nanoparticle addition as a multiresistant antibacterial materialâ€, JKPK., 6(3), 371-383, 2021, https://jurnal.uns.ac.id/jkpk.

R.C. Goy, D. de Britto, and O.B.G. Assis, “A review of the antimicrobial activity of chitosanâ€, Polímeros: Ciência e Tecnologia, 19(3), 241-247, 2009, doi: 10.1590/S0104-14282009000300013.

S.A. Akintelu, and A.S. Folorunso, “A review on green synthesis of zinc oxide nanoparticles using plant extracts and its biomedical applicationsâ€. Bionanoscience,, 10(6-s), 2020, doi: 10.1007/s12668-020-00774-6.

R. Dadi, R. Azouani, M. Traore, C. Mielcarek, and A. Kanaev, “Antibacterial activity of ZnO and CuO nanoparticles against gram positive and gram negative strainsâ€, Mater. Sci. Eng. C, 104, 109968, 2019, doi: 10.1016/j.msec.2019.109968.

G.K. Weldegebrieal, “Synthesis method, antibacterial and photocatalytic activity of ZnO nanoparticles for azo dyes in wastewater treatment: A reviewâ€, Inorg. Chem. Commun., 120, 108140, 2020, doi: 10.1016/j.inoche.2020.108140.

A. Al Baroot, M. Alheshibri, Q. A. Drmosh, S. Akhtar, E. Kotb, and K.A. Elsayed, “A novel approach for fabrication ZnO/CuO nanocomposite via laser ablation in liquid and its antibacterial activityâ€, Arab. J. Chem., 15(2), 103606, 2022, doi: 10.1016/j.arabjc.2021.103606.

Downloads

Published

2023-06-30

Citation Check