Degradation of Phenol Using Sonolysis and Photolysis by TiO2/RHAC Catalyst and Analysis with Spectrophotometer UV-VIS and HPLC


Safni - Safni(1*), Eno Okta Patricia(2), Trisna Ollinovela(3), Yulizar Yusuf(4)

(1) Applied Analytical-Chemistry Laboratory, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Andalas, Indonesia
(2) Applied Analytical-Chemistry Laboratory, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Andalas, Indonesia
(3) Applied Analytical-Chemistry Laboratory, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Andalas, Indonesia
(4) Applied Analytical-Chemistry Laboratory, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Andalas, Indonesia
(*) Corresponding Author

Abstract


This study focuses on the degradation of phenol in aqueous solutions using photolysis and sonolysis methods. It investigates the impact of catalyst mass, types of light (UV-A, UV-C, and visible light), types of catalyst (RHAC, TiO2, and TiO2/RHAC), and processing time on phenol degradation. The phenol solutions are analyzed before and after degradation using Spectrophotometer UV-Vis and HPLC. The research aims to understand the factors influencing phenol degradation and provide a basis for further studies to enhance the efficiency of phenol removal. Results show significant improvements in degradation percentages of phenol by using TiO2/RHAC as the catalyst. Sonolysis achieves a degradation of 20.82% with a catalyst, which increases to 50.57% with the catalyst. Photolysis achieves a degradation of 29.06%, which rises to 91.99% with the catalyst. The highest degradation percentage is achieved using UV-A light for 5 hours with a catalyst mass of 30 mg of TiO2/RHAC catalyst. HPLC analysis confirms a decreased phenol concentration and the presence of intermediate compounds. The TiO2/RHAC catalyst demonstrates the promising potential for efficient phenol degradation in aqueous solutions.


Keywords


Degradation; phenol; photolysis; sonolysis; TiO2/RHAC

Full Text:

PDF

References


W. Bruce, M.E. Meek, and R. Newhook, “Phenol: Hazard characterization and exposure-response analysis”, J Environ Sci Health C Environ Carcinog Ecotoxicol Rev, 19(1), 305–324, 2001, doi: 10.1081/GNC-100103589.

Decree of the State Minister for the Environment Number KEP-51/MENLH/1995: Quality Standards for Liquid Waste for Industrial Activities. 1995.

Decree of the State Minister of Health Republic of Indonesia Number 907/Menkes/SK/VII/2002: Requirements and Supervision of Drinking Water Quality. 2002.

M.T. Nakhjiri, G. Bagheri Marandi, and M. Kurdtabar, “Preparation of magnetic double network nanocomposite hydrogel for adsorption of phenol and p-nitrophenol from aqueous solution”, J Environ Chem Eng, 9(2), 2021, doi: 10.1016/j.jece.2021.105039.

A. Mnif, D. Tabassi, M. Ben Sik Ali, and B. Hamrouni, “Phenol removal from water by AG reverse osmosis membrane”, Environ Prog Sustain Energy, 34(4), 982–989, 2015, doi: 10.1002/ep.12078.

S. Golbaz, A.J. Jafari, M. Rafiee, and R.R. Kalantary, “Separate and simultaneous removal of phenol, chromium, and cyanide from aqueous solution by coagulation/precipitation: Mechanisms and theory”, Chemical Engineering Journal, 253, pp. 251–257, 2014, doi: 10.1016/j.cej.2014.05.074.

V.Y. Safitri, A. Santoni, D.V. Wellia, K. Khoiriah, and S. Safni, “Degradation of Paracetamol by Photolysis Using C-N-codoped TiO2”, Molekul, 12(2), 189–195, 2017, doi: 10.20884/1.jm.2017.12.2.378.

S. Chakma and V.S. Moholkar, “Mechanistic analysis of sono-photolysis degradation of carmoisine”, Journal of Industrial and Engineering Chemistry, 33, 276–287, 2016, doi: 10.1016/j.jiec.2015.10.015.

S. Safni, V. Wulanda, K. Khoiriah, and D. V. Wellia, “Degradasi senyawa fenol secara fotokatalisis dengan menggunakan katalis C-doped TiO2”, Jurnal Litbang Industri, 9(1), 51–57, 2019, doi: 10.24960/jli.v8i2.4675.51-57.

Central Statistics Agency (BPS), “Statistic Official News No. 74/10/Th XXV”.

A. Piatkowska, M. Janus, K. Szymá Nski, and S. Mozia, “C-N-and S-Doped TiO2 Photocatalysts: A Review”, Catalyst, 11(144), 1–56, 2021, doi: 10.3390/catal.

Syukri, A. Fikri, Safni, and O.N. Tetra, “Synthesis of zeolite from natural clay and rice husk to lower the band gap of titania as a promising photocatalyst”, Journal of Chemistry and Technologies, 30(1), 60–68, 2022, doi: 10.15421/jchemtech.v30i1.237739.

B. Xing et al., “Preparation of TiO2/Activated Carbon Composites for Photocatalytic Degradation of RhB under UV Light Irradiation”, J Nanomater, 2016, doi: 10.1155/2016/8393648.

R.A. Putri, S. Safni, N. Jamarun, and U. Septiani, “Kinetics study and degradation pathway of methyl orange photodegradation in the presence of C-N-codoped TiO2 catalyst”, Egypt J Chem, 63, Spesial Issue (Part 2), 563–575, 2020, doi: 10.21608/ejchem.2019.14543.1883.

K. Khoiriah, S. Safni, S. Syukri, and J. Gunlazuardi, “The operational parameters effect on photocatalytic degradation of diazinon using carbon and nitrogen modified TiO2”, Rasayan Journal of Chemistry, 13(3), 1919–1925, 2020, doi: 10.31788/RJC.2020.1335743.

S. Safni, M.R. Wahyuni, K. Khoiriah, and Y. Yusuf, “Photodegradation of phenol using N-doped TiO2 catalyst”, Molekul, 14(1), 6–10, 2019, doi: 10.20884/1.jm.2019.14.1.447.

S. Au–Pree, P. Narakaew, S. Thungprasert, T. Promanan, A. Chaisena, and S. Narakaew, “Enhanced photocatalytic activity of c-doped TiO2 under visible light irradiation: A comparison of corn starch, honey, and polyethylene glycol as a carbon source”, Engineering Journal, 25(1), 53–68, 2021, doi: 10.4186/ej.2021.25.1.53.

R.A. Putri, S. Safni, D.V. Wellia, U. Septiani, and N. Jamarun, “Degradasi Zat Warna Orange-F3R dan Violet-3B secara Sonolisis Frekuensi Rendah dengan Penambahan Katalis C-N-Codoped TiO2”, Jurnal Kimia Valensi, 5(1), 35–43, 2019, doi: 10.15408/jkv.v5i1.7801.

Safni, R. Audina Putri, D. Vanda Wellia, and U. Septiani, “Photodegradation of orange F3R dyes: effect of light sources and the addition of CN-codoped TiO2 catalyst”, Der Pharma Chemica, 9(10), 1–5, 2017, www.derpharmachemica.com.

B. Satbaev et al., “Rice husk research: From environmental pollutant to a promising source of organo-mineral raw materials”, Materials, 14(15), 2021, doi: 10.3390/ma14154119.

Z. Heidarinejad, M.H. Dehghani, M. Heidari, G. Javedan, I. Ali, and M. Sillanpää, “Methods for preparation and activation of activated carbon: a review”, Environmental Chemistry Letters, 18(2), 393–415, 2020. doi: 10.1007/s10311-019-00955-0.

H.N.C. Dharma et al., “A Review of Titanium Dioxide (TiO2)-Based Photocatalyst for Oilfield-Produced Water Treatment”, Membranes (Basel), 12(3), 2022, doi: 10.3390/membranes12030345.

M. Chobchun, P. Jutakridsada, P. Thiamsinsangwon, P. Kasemsiri, K. Kamwilaisak, and P. Chindaprasirt, “Characterization of TiO2-activated carbon onto adsorption and photocatalytic properties and its application”, Journal of Metals, Materials and Minerals, 30(4), 30–38, 2020, doi: 10.14456/jmmm.2020.48.

M.H. Abdurahman, A.Z. Abdullah, and N.F. Shoparwe, “A comprehensive review on sonocatalytic, photocatalytic, and sonophotocatalytic processes for the degradation of antibiotics in water: Synergistic mechanism and degradation pathway”, Chemical Engineering Journal, 413, 2021, doi: 10.1016/j.cej.2020.127412.

R.A. Putri, S. Safni, N. Jamarun, U. Septiani, M. K. Kim, and K.D. Zoh, “Degradation and mineralization of violet-3B dye using C-N-codoped TiO2 photocatalyst”, Environmental Engineering Research, 25(4), 529–535, 2020, doi: 10.4491/eer.2019.196.




DOI: https://doi.org/10.15575/ak.v10i1.24775

Copyright (c) 2023 Safni - Safni

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

CrossrefSINTAGoogle ScholarIndonesia One Search

View My Stats

 

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.