Effect of Preparation Acetone on Fish Bones Synthesized Through Sintering Method to Improve Hydroxyapatite Characteristics


Ratna Kusumawardani(1), Atiek Rostika Noviyanti(2*), Mukhamad Nurhadi(3), Akrajas Ali Umar(4)

(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran Department of Chemistry Education, Faculty of Teacher and Educational Science, Universitas Mulawarman, Indonesia
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Indonesia
(3) Department of Chemistry Education, Faculty of Teacher and Educational Science, Universitas Mulawarman, Indonesia
(4) Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, Malaysia
(*) Corresponding Author

Abstract


In the development of advanced materials and various technological applications, the preparation and sintering processes have become two important factors in determining material characteristics. This research focuses on two main aspects, namely the effect of fish bone preparation by soaking in acetone and the surface area of the material in the sintering process as part of the process of developing better materials. This research aims to determine the effect of soaking fish bone powder with acetone and the effect of the surface area of sintered fish bones to produce hydroxyapatite (HA). The immersion process with acetone is included in the sample preparation stage, while the sintering process is included in the material synthesis stage. These two things can affect the characteristics of the HA produced after analysis from the X-ray diffraction test. The HA structure obtained from all samples is hexagonal with cell parameter values a = b ≠ c and space group P 63 / m, where all samples have a value range of a = b = 9,42 Å and c = 6,88 Å. HA crystallinity was identified through the XRD peak at 2θ = 25,8 (002); 31,7 (211); 32,1 (112); 32,8 (300); 34,0 (202); 39,7 (310); 46,6 (222); 49,4 (213); 50,4 (321). The PAF-900 and CAF-900 samples are similar to HA in JCPDS 01-089-4405 whose compound formula is Ca5(PO4)3(OH) while the PWAF-900 sample is similar to HA in JCPDS 01-075-3727 whose compound formula is Ca5(PO4)3(CO3)0.01(OH)1.3. The percentage of crystallinity of PAF-900, CAF-900, and PWAF-900 respectively was 84,767; 73,506; and 71,962% with HA grain sizes of 0,8964; 0,6808, and 0,7398 nm. The HA density of PAF-900 and CAF-900 samples is 3,149 g/cm3 while PWAF-900 is 3,146 g/cm3. Based on this description, it can be concluded that the soaking preparation stage with acetone produces HA with the chemical formula Ca5(PO4)3OH with a higher percentage of crystallization and is denser compared to HA obtained without going through the soaking preparation stage with acetone. The sintering stage also plays an important role in increasing the crystallization percentage. The surface area of the material being sintered also influences the percentage of crystallization and the grain size of the resulting HA. Sintered fish bone powder produces a greater percentage of crystallization and grain size than fish bone chunks

Keywords


hydroxyapatite; sintering; fish bones; preparation; ukuran butir.

Full Text:

PDF

References


Y. Cai, H. Li, M. Karlsson, K. Leifer, H. Engqvist, and W. Xia, “Biomineralization on single crystalline rutile: the modulated growth of hydroxyapatite by fibronectin in a simulated body fluid”, RSC Adv., 6(42), 35507–35516, 2016, doi: 10.1039/C6RA04303H.

J. Guan et al., “Bioinspired nanostructured hydroxyapatite/collagen three-dimensional porous scaffolds for bone tissue engineering”, RSC Adv., 5(46), 36175–36184, 2015, doi: 10.1039/C5RA01487E.

L. Morejón et al., “Development, characterization and in vitro biological properties of scaffolds fabricated from calcium phosphate nanoparticles”, Int. J. Mol. Sci., 20(7), 2019, doi: 10.3390/ijms20071790.

S. Kojima, H. Nakamura, S. Lee, F. Nagata, and K. Kato, “Hydroxyapatite formation on self-assembling peptides with differing secondary structures and their selective adsorption for proteins”, Int. J. Mol. Sci., 20(18), 2019, doi: 10.3390/ijms20184650.

Y.-Y. Hu, A. Rawal, and K. Schmidt-Rohr, “Strongly bound citrate stabilizes the apatite nanocrystals in bone”, Proc. Natl. Acad. Sci., 107(52), 22425–22429, Dec. 2010, doi: 10.1073/pnas.1009219107.

M.T. Islam, R.M. Felfel, E.A. Abou Neel, D.M. Grant, I. Ahmed, and K.M.Z. Hossain, “Bioactive calcium phosphate–based glasses and ceramics and their biomedical applications: A review”, J. Tissue Eng., 8, 2041731417719170, 2017, doi: 10.1177/2041731417719170.

Y. Bala and E. Seeman, “Bone’s material constituents and their contribution to bone strength in health, disease, and treatment”, Calcif. Tissue Int., 97(3), 308–326, 2015, doi: 10.1007/s00223-015-9971-y.

K. Bechara et al., "A histological study of non-ceramic hydroxyapatite as a bone graft substitute material in the vertical bone augmentation of the posterior mandible using an interposition inlay technique: A split-mouth evaluation", Ann. Anat. - Anat. Anz., 202, 1–7, 2015, doi: 10.1016/j.aanat.2015.07.004.

A.H. Dewi and I.D. Ana, “The use of hydroxyapatite bone substitute grafting for alveolar ridge preservation, sinus augmentation, and periodontal bone defect: A systematic review”, Heliyon, 4(10), e00884, 2018, doi: 10.1016/j.heliyon.2018.e00884.

J. Ran et al., “Constructing multi-component organic/inorganic composite bacterial cellulose-gelatin/hydroxyapatite double-network scaffold platform for stem cell-mediated bone tissue engineering”, Mater. Sci. Eng. C, 78, 130–140, 2017, doi: 10.1016/j.msec.2017.04.062.

M.C. Lee et al., "Development of novel gene carrier using modified nano-hydroxyapatite derived from equine bone for osteogenic differentiation of dental pulp stem cells", Bioact. Mater., 6(9), 2742–2751, 2021, doi: 10.1016/j.bioactmat.2021.01.020.

J. Huang, S. Sebastian, M. Collin, M. Tägil, L. Lidgren, and D.B. Raina, "A calcium sulfate/hydroxyapatite ceramic biomaterial carrier for local delivery of tobramycin in bone infections: Analysis of rheology, drug release, and antimicrobial efficacy", Ceram. Int., 2023, doi: 10.1016/j.ceramint.2023.08.064.

Y.Q. Almulaiky et al., “Hydroxyapatite-decorated ZrO2 for α-amylase immobilization: Toward the enhancement of enzyme stability and reusability”, Int. J. Biol. Macromol., 167, 299–308, 2021, doi: 10.1016/j.ijbiomac.2020.11.150.

J. Fang, P. Li, X. Lu, L. Fang, X. Lü, and F. Ren, “A strong, tough, and osteoconductive hydroxyapatite mineralized polyacrylamide/dextran hydrogel for bone tissue regeneration”, Acta Biomater., 88, 503–513, 2019, doi: 10.1016/j.actbio.2019.02.019.

C. Li, W. Qin, S. Lakshmanan, X. Ma, X. Sun, and B. Xu, “Hydroxyapatite based biocomposite scaffold: A highly biocompatible material for bone regeneration”, Saudi J. Biol. Sci., 27(8), 2143–2148, 2020, doi: 10.1016/j.sjbs.2020.05.029.

M.N. Salimi and A. Anuar, “Characterizations of Biocompatible and Bioactive Hydroxyapatite Particles”, Malays. Tech. Univ. Conf. Eng. Amp Technol. 2012 MUCET 2012, 53, 192–196, 2013, doi: 10.1016/j.proeng.2013.02.025.

L. Cheng et al., “Osteoinduction of hydroxyapatite/β-tricalcium phosphate bioceramics in mice with a fractured fibula” Acta Biomater., 6(4), 1569–1574, 2010, doi: 10.1016/j.actbio.2009.10.050.

X. Wei, X. Zhang, Z. Yang, L. Li, and H. Sui, "Osteoinductive potential and antibacterial characteristics of collagen-coated iron oxide nanosphere containing strontium and hydroxyapatite in long term bone fractures", Arab. J. Chem., 14(3), 102984, 2021.

B.-S. Chang et al., “Osteoconduction at porous hydroxyapatite with various pore configurations”, Biomaterials, 21(12), 1291–1298, 2000, doi: 10.1016/S0142-9612(00)00030-2.

Q. Wang et al., “Experimental and simulation studies of strontium/zinc-codoped hydroxyapatite porous scaffolds with excellent osteoinductivity and antibacterial activity”, Appl. Surf. Sci., 462, 118–126, 2018, doi: 10.1016/j.apsusc.2018.08.068.

N.A.S. Mohd Pu’ad, P. Koshy, H.Z. Abdullah, M.I. Idris, and T.C. Lee, “Syntheses of hydroxyapatite from natural sources”, Heliyon, 5(5), e01588, 2019, doi: 10.1016/j.heliyon.2019.e01588.

H. Wu, H. Yan, Y. Quan, H. Zhao, N. Jiang, and C. Yin, "Recent progress and perspectives in bio trickling filters for VOCs and odorous gases treatment", J. Environ. Manage., 222, 409–419, 2018, doi: 10.1016/j.jenvman.2018.06.001.

M. Bin Mobarak et al., “Environmental remediation by hydroxyapatite: Solid state synthesis utilizing waste chicken eggshell and adsorption experiment with Congo red dye” J. Saudi Chem. Soc., 27(5), 101690, Sep. 2023, doi: 10.1016/j.jscs.2023.101690.

R.A. Alsaiari, E.M. Musa, and M.A. Rizk, “Biodiesel production from date seed oil using hydroxyapatite-derived catalyst from waste camel bone”, Heliyon, 9(5), e15606, 2023, doi: 10.1016/j.heliyon.2023.e15606.

C.R. Holkar, A.J. Jadhav, D.V. Pinjari, N.M. Mahamuni, and A.B. Pandit, “A critical review on textile wastewater treatments: Possible approaches”, J. Environ. Manage., 182, 351–366, 2016, doi: 10.1016/j.jenvman.2016.07.090.

M. Sadat-Shojai, M.-T. Khorasani, E. Dinpanah-Khoshdargi, and A. Jamshidi, “Synthesis methods for nanosized hydroxyapatite with diverse structures”, Acta Biomater., 9(8), 7591–7621, 2013, doi: 10.1016/j.actbio.2013.04.012.

N.A.S. Mohd Pu’ad, P. Koshy, H.Z. Abdullah, M.I. Idris, and T.C. Lee, “Syntheses of hydroxyapatite from natural sources”, Heliyon, 5(5), e01588, 2019, doi: 10.1016/j.heliyon.2019.e01588.

C.R. Akshata, G. Harichandran, and E. Murugan, “Effect of pectin on the crystallization of strontium substituted HA for bone reconstruction application”, Colloids Surf. B Biointerfaces, 226, 113312, 2023, doi: 10.1016/j.colsurfb.2023.113312.

C. Li-yun, Z. Chuan-bo, and H. Jian-feng, “Influence of temperature, [Ca2+], Ca/P ratio and ultrasonic power on the crystallinity and morphology of hydroxyapatite nanoparticles prepared with a novel ultrasonic precipitation method”, Mater. Lett., 59(14), 1902–1906, 2005, doi: 10.1016/j.matlet.2005.02.007.

X. Zhao et al., “Preparation of carbon fiber/Mg-doped nano-hydroxyapatite composites under low temperature by pressureless sintering”, Ceram. Int., 48(1), 674–683, 2022, doi: 10.1016/j.ceramint.2021.09.147.

M. Baladi et al., “Green sol–gel synthesis of hydroxyapatite nanoparticles using lemon extract as capping agent and investigation of its anticancer activity against human cancer cell lines (T98, and SHSY5)”, Arab. J. Chem., 16(4), 104646, 2023, doi: 10.1016/j.arabjc.2023.104646.

A.R. Noviyanti, I. Rahayu, R.P. Fauzia, and Risdiana, "The effect of Mg concentration to the mechanical strength of hydroxyapatite derived from eggshell”, Arab. J. Chem., 14(4), 103032, 2021, doi: 10.1016/j.arabjc.2021.103032.

T.S. Trung et al., “Valorization of fish and shrimp wastes to nano-hydroxyapatite/chitosan biocomposite for wastewater treatment”, J. Sci. Adv. Mater. Devices, 7(4), 100485, 2022, doi: 10.1016/j.jsamd.2022.100485.

M. Nurhadi, R. Kusumawardani, W. Wirhanuddin, R. Gunawan, and H. Nur, “Carbon-containing hydroxyapatite obtained from fish bone as low-cost mesoporous material for methylene blue adsorption”, Bull. Chem. React. Eng. Catal., 14(3), 660–671, 2019, doi: 10.9767/bcrec.14.3.5365.660-671.

A.M. Castillo-Paz, M. Gomez-Resendiz, D.F. Cañon-Davila, B.A. Correa-Piña, R. Ramírez-Bon, and M.E. Rodriguez-Garcia, “The effect of temperature on the physical-chemical properties of bovine hydroxyapatite biomimetic scaffolds for bone tissue engineering”, Ceram. Int., 2023, doi: 10.1016/j.ceramint.2023.08.065.

E.A. Ofudje, A. Rajendran, A.I. Adeogun, M.A. Idowu, S.O. Kareem, and D.K. Pattanayak, “Synthesis of organic derived hydroxyapatite scaffold from pig bone waste for tissue engineering applications”, Adv. Powder Technol., 29(1), 1–8, 2018, doi: 10.1016/j.apt.2017.09.008.

J. Liao, X. He, Y. Zhang, L. Zhang, and Z. He, “The construction of magnetic hydroxyapatite-functionalized pig manure-derived biochar for the efficient uranium separation”, Chem. Eng. J., 457, 141367, Feb. 2023, doi: 10.1016/j.cej.2023.141367.

V. Boursiaki et al., “Skeletal deformity of scoliosis in gilthead seabreams (sparus aurata): association with changes to calcium-phosphor hydroxyapatite salts and collagen fibers”, Water, 11(2), 2019, doi: 10.3390/w11020257.

P.V. Nam, N.V. Hoa, and T.S. Trung, “Properties of hydroxyapatites prepared from different fish bones: A comparative study”, Ceram. Int., 45(16), 20141–20147, 2019, doi: 10.1016/j.ceramint.2019.06.280.

S. Meski et al., “Synthesis of hydroxyapatite from mussel shells for effective adsorption of aqueous Cd(II)”, Water Sci. Technol. J. Int. Assoc. Water Pollut. Res., 80(7), 1226–1237, Oct. 2019, doi: 10.2166/wst.2019.366.

R. Ismail et al., “Characterization of PLA/PCL/Green mussel shells hydroxyapatite (HA) biocomposites prepared by chemical blending methods”, Materials, 15(23), 2022, doi: 10.3390/ma15238641.

I. Kusumaningrum and A.N. Asikin, “Karakteristik kerupuk ikan fortifikasi kalsium dari tulang ikan belida”, J. Pengolah. Has. Perikan. Indones., 19 (3), 233–240.

H.F. Putranto, A.N. Asikin, and I. Kusumaningrum, “Karakterisasi tepung tulang ikan belida (Chitala SP.) sebagai sumber kalsium dengan metode hidrolisis protein”, Ziraaah Maj. Ilm. Pertan., 41(1), 11–20, 2016, doi: 10.31602/zmip.v41i1.315.

E. Mahmuda, N. Idiawati, and M.A. Wibowo, “Ekstraksi gelatin pada tulang ikan belida (Chitala lopis) dengan proses perlakuan asam klorida”, J. Kim. Khatulistiwa, 7 (4), 114–123, 2018.

P.R. Minim et al., “The combined effects of binder addition and different sintering methods on the mechanical properties of bovine hydroxyapatite”, J. Mech. Behav. Biomed. Mater., 144, 105993, 2023, doi: 10.1016/j.jmbbm.2023.105993.

E.S. Krishna and G. Suresh, “Development and characterization of acicular nano-hydroxyapatite powder from wet chemical synthesis method”, Int. Conf. Mater. Mech. Model., 56, 781–784, 2022, doi: 10.1016/j.matpr.2022.02.256.

B.M. Ferrairo et al., “Production of bovine hydroxyapatite nanoparticles as a promising biomaterial via mechanochemical and sonochemical methods”, Mater. Chem. Phys., 295, 127046, 2023, doi: 10.1016/j.matchemphys.2022.127046.

H. Chen, R. Wang, L. Qian, H. Liu, J. Wang, and M. Zhu, “Surface modification of urchin-like serried hydroxyapatite with sol-gel method and its application in dental composites”, Compos. Part B Eng., 182, 107621, 2020, doi: 10.1016/j.compositesb.2019.107621.

L.F. Zubieta-Otero and M.E. Rodriguez-Garcia, “Obtention and characterization of nano bio-hydroxyapatite particles by combined hydrothermal alkaline and ultrasonic wet milling methods”, Mater., 1(3), 100019, 2023, doi: 10.1016/j.nxmate.2023.100019.

M.R. Ayatollahi, M.Y. Yahya, H. Asgharzadeh Shirazi, and S.A. Hassan, “Mechanical and tribological properties of hydroxyapatite nanoparticles extracted from natural bovine bone and the bone cement developed by nano-sized bovine hydroxyapatite filler”, Ceram. Int., 41(9), Part A, 10818–10827, 2015, doi: 10.1016/j.ceramint.2015.05.021.

E. Hosseinzadeh, M. Davarpanah, N.H. Nemati, and S. Tavakoli, “Fabrication of a hard tissue replacement using natural hydroxyapatite derived from bovine bones by thermal decomposition method”, Int. J. Organ Transplant. Med., 5(1), 23, 2014.

N.A.M. Barakat, M.S. Khil, A.M. Omran, F.A. Sheikh, and H.Y. Kim, “Extraction of pure natural hydroxyapatite from the bovine bones bio waste by three different methods”, J. Mater. Process. Technol., 209(7), 3408–3415, 2009, doi: 10.1016/j.jmatprotec.2008.07.040.

M. Akram, R. Ahmed, I. Shakir, W.A.W. Ibrahim, and R. Hussain, “Extracting hydroxyapatite and its precursors from natural resources”, J. Mater. Sci., 49(4), 1461–1475, 2014, doi: 10.1007/s10853-013-7864-x.

R. Murugan, S. Ramakrishna, and K.P. Rao, “Nanoporous hydroxy-carbonate apatite scaffold made of natural bone”, Mater. Lett., 60(23), 2844–2847, 2006, doi: 10.1016/j.matlet.2006.01.104.

M.R. Mazlan et al., “Necking mechanism under various sintering process parameters – A review”, J. Mater. Res. Technol., 23, 2189–2201, 2023, doi: 10.1016/j.jmrt.2023.01.013.

J. Venkatesan, Z.J. Qian, B. Ryu, N.V. Thomas, and S.K. Kim, “A comparative study of thermal calcination and an alkaline hydrolysis method in the isolation of hydroxyapatite from Thunnus obesus bone”, Biomed. Mater., 6(3), 035003, Apr. 2011, doi: 10.1088/1748-6041/6/3/035003.

A. Mathirat et al., “Remineralizing potential of natural nano-hydroxyapatite obtained from epinephelus chlorostigma in artificially induced early enamel lesion: An in vitro study.,” Nanomater. Basel Switz., 12(22), 2022, doi: 10.3390/nano12223993.

P. Shi, M. Liu, F. Fan, C. Yu, W. Lu, and M. Du, “Characterization of natural hydroxyapatite originated from fish bone and its biocompatibility with osteoblasts”, Mater. Sci. Eng. C, 90, 706–712, 2018, doi: 10.1016/j.msec.2018.04.026.

J. Venkatesan, S.-K. Kim, and S. Kim, Hydroxyapatite from marine fish bone: isolation and characterization techniques. CRC Press Boca Raton, USA, 2016.

B.-H. Chen, K.-I. Chen, M.-L. Ho, H.-N. Chen, W.-C. Chen, and C.-K. Wang, “Synthesis of calcium phosphates and porous hydroxyapatite beads prepared by emulsion method”, Mater. Chem. Phys., 113(1), 365–371, 2009, doi: 10.1016/j.matchemphys.2008.06.040.

P. Shi, M. Liu, F. Fan, C. Yu, W. Lu, and M. Du, “Characterization of natural hydroxyapatite originated from fish bone and its biocompatibility with osteoblasts”, Mater. Sci. Eng. C, 90, 706–712, 2018, doi: 10.1016/j.msec.2018.04.026.

M. Sumadiyasa and I.B.S. Manuaba, “Penentuan ukuran kristal menggunakan formula scherrer, williamson-hull plot dan ukuran partikel dengan SEM”, Bul Fis FMIPA UNUD Bul., 19(1), 28–35, 2018.

J.G. Miranda-Hernández, H. Herrera-Hernández, C.O. González-Morán, J.N. Rivera Olvera, I. Estrada-Guel, and F. Botello Villa, “Synthesis and characterization of Zn-Nix advanced alloys prepared by mechanical milling and sintering at solid-state process”, Adv. Mater. Sci. Eng., 2017, 7967848, 2017, doi: 10.1155/2017/7967848.

H. Dai, D. Chen, and Z. Zheng, “Modelling the sintering neck growth process of metal fibers under the surface diffusion mechanism using the lattice Boltzmann method”, Metals, 9(5), 614, 2019.

K. Nishiyabu, “15 - Powder space holder metal injection molding (PSH-MIM) of micro-porous metals,” in Handbook of Metal Injection Molding, D.F. Heaney, Ed., Woodhead Publishing, 2012, 349–390. doi: 10.1533/9780857096234.3.349.

H.N. Yoshimura, A.L. Molisani, N.E. Narita, P.F. Cesar, and H. Goldenstein, “Porosity dependence of elastic constants in aluminum nitride ceramics”, Mater. Res., 10, 127–133, 2007.

F.F. Lange, “Densification of powder compacts: An unfinished story”, Dev. Ceram. Sci. Eng. Last 50 Years Meet. Celebr. Profr. Sir Richard Brooks 70th Birthd., 28(7), 1509–1516, 2008, doi: 10.1016/j.jeurceramsoc.2007.12.016.

M.N. Rahaman, “Series materials engineering,” (Marcel Dekker, Inc.): 10., New York : M. Dekker, c1995.




DOI: https://doi.org/10.15575/ak.v10i2.29422

Copyright (c) 2023 Ratna Kusumawardani, Atiek Rostika Noviyanti, Mukhamad Nurhadi, Akrajas Ali Umar

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

CrossrefSINTAGoogle ScholarIndonesia One Search

View My Stats

 

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.