Effect of Preparation Acetone on Fish Bones Synthesized Through Sintering Method to Improve Hydroxyapatite Characteristics

Authors

  • Ratna Kusumawardani Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran Department of Chemistry Education, Faculty of Teacher and Educational Science, Universitas Mulawarman, Indonesia
  • Atiek Rostika Noviyanti Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Indonesia
  • Mukhamad Nurhadi Department of Chemistry Education, Faculty of Teacher and Educational Science, Universitas Mulawarman, Indonesia
  • Akrajas Ali Umar Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, Malaysia

DOI:

https://doi.org/10.15575/ak.v10i2.29422

Keywords:

hydroxyapatite, sintering, fish bones, preparation, ukuran butir.

Abstract

In the development of advanced materials and various technological applications, the preparation and sintering processes have become two important factors in determining material characteristics. This research focuses on two main aspects, namely the effect of fish bone preparation by soaking in acetone and the surface area of the material in the sintering process as part of the process of developing better materials. This research aims to determine the effect of soaking fish bone powder with acetone and the effect of the surface area of sintered fish bones to produce hydroxyapatite (HA). The immersion process with acetone is included in the sample preparation stage, while the sintering process is included in the material synthesis stage. These two things can affect the characteristics of the HA produced after analysis from the X-ray diffraction test. The HA structure obtained from all samples is hexagonal with cell parameter values a = b ≠ c and space group P 63 / m, where all samples have a value range of a = b = 9,42 Å and c = 6,88 Å. HA crystallinity was identified through the XRD peak at 2θ = 25,8 (002); 31,7 (211); 32,1 (112); 32,8 (300); 34,0 (202); 39,7 (310); 46,6 (222); 49,4 (213); 50,4 (321). The PAF-900 and CAF-900 samples are similar to HA in JCPDS 01-089-4405 whose compound formula is Ca5(PO4)3(OH) while the PWAF-900 sample is similar to HA in JCPDS 01-075-3727 whose compound formula is Ca5(PO4)3(CO3)0.01(OH)1.3. The percentage of crystallinity of PAF-900, CAF-900, and PWAF-900 respectively was 84,767; 73,506; and 71,962% with HA grain sizes of 0,8964; 0,6808, and 0,7398 nm. The HA density of PAF-900 and CAF-900 samples is 3,149 g/cm3 while PWAF-900 is 3,146 g/cm3. Based on this description, it can be concluded that the soaking preparation stage with acetone produces HA with the chemical formula Ca5(PO4)3OH with a higher percentage of crystallization and is denser compared to HA obtained without going through the soaking preparation stage with acetone. The sintering stage also plays an important role in increasing the crystallization percentage. The surface area of the material being sintered also influences the percentage of crystallization and the grain size of the resulting HA. Sintered fish bone powder produces a greater percentage of crystallization and grain size than fish bone chunks

References

Y. Cai, H. Li, M. Karlsson, K. Leifer, H. Engqvist, and W. Xia, “Biomineralization on single crystalline rutile: the modulated growth of hydroxyapatite by fibronectin in a simulated body fluidâ€, RSC Adv., 6(42), 35507–35516, 2016, doi: 10.1039/C6RA04303H.

J. Guan et al., “Bioinspired nanostructured hydroxyapatite/collagen three-dimensional porous scaffolds for bone tissue engineeringâ€, RSC Adv., 5(46), 36175–36184, 2015, doi: 10.1039/C5RA01487E.

L. Morejón et al., “Development, characterization and in vitro biological properties of scaffolds fabricated from calcium phosphate nanoparticlesâ€, Int. J. Mol. Sci., 20(7), 2019, doi: 10.3390/ijms20071790.

S. Kojima, H. Nakamura, S. Lee, F. Nagata, and K. Kato, “Hydroxyapatite formation on self-assembling peptides with differing secondary structures and their selective adsorption for proteinsâ€, Int. J. Mol. Sci., 20(18), 2019, doi: 10.3390/ijms20184650.

Y.-Y. Hu, A. Rawal, and K. Schmidt-Rohr, “Strongly bound citrate stabilizes the apatite nanocrystals in boneâ€, Proc. Natl. Acad. Sci., 107(52), 22425–22429, Dec. 2010, doi: 10.1073/pnas.1009219107.

M.T. Islam, R.M. Felfel, E.A. Abou Neel, D.M. Grant, I. Ahmed, and K.M.Z. Hossain, “Bioactive calcium phosphate–based glasses and ceramics and their biomedical applications: A reviewâ€, J. Tissue Eng., 8, 2041731417719170, 2017, doi: 10.1177/2041731417719170.

Y. Bala and E. Seeman, “Bone’s material constituents and their contribution to bone strength in health, disease, and treatmentâ€, Calcif. Tissue Int., 97(3), 308–326, 2015, doi: 10.1007/s00223-015-9971-y.

K. Bechara et al., "A histological study of non-ceramic hydroxyapatite as a bone graft substitute material in the vertical bone augmentation of the posterior mandible using an interposition inlay technique: A split-mouth evaluation", Ann. Anat. - Anat. Anz., 202, 1–7, 2015, doi: 10.1016/j.aanat.2015.07.004.

A.H. Dewi and I.D. Ana, “The use of hydroxyapatite bone substitute grafting for alveolar ridge preservation, sinus augmentation, and periodontal bone defect: A systematic reviewâ€, Heliyon, 4(10), e00884, 2018, doi: 10.1016/j.heliyon.2018.e00884.

J. Ran et al., “Constructing multi-component organic/inorganic composite bacterial cellulose-gelatin/hydroxyapatite double-network scaffold platform for stem cell-mediated bone tissue engineeringâ€, Mater. Sci. Eng. C, 78, 130–140, 2017, doi: 10.1016/j.msec.2017.04.062.

M.C. Lee et al., "Development of novel gene carrier using modified nano-hydroxyapatite derived from equine bone for osteogenic differentiation of dental pulp stem cells", Bioact. Mater., 6(9), 2742–2751, 2021, doi: 10.1016/j.bioactmat.2021.01.020.

J. Huang, S. Sebastian, M. Collin, M. Tägil, L. Lidgren, and D.B. Raina, "A calcium sulfate/hydroxyapatite ceramic biomaterial carrier for local delivery of tobramycin in bone infections: Analysis of rheology, drug release, and antimicrobial efficacy", Ceram. Int., 2023, doi: 10.1016/j.ceramint.2023.08.064.

Y.Q. Almulaiky et al., “Hydroxyapatite-decorated ZrO2 for α-amylase immobilization: Toward the enhancement of enzyme stability and reusabilityâ€, Int. J. Biol. Macromol., 167, 299–308, 2021, doi: 10.1016/j.ijbiomac.2020.11.150.

J. Fang, P. Li, X. Lu, L. Fang, X. Lü, and F. Ren, “A strong, tough, and osteoconductive hydroxyapatite mineralized polyacrylamide/dextran hydrogel for bone tissue regenerationâ€, Acta Biomater., 88, 503–513, 2019, doi: 10.1016/j.actbio.2019.02.019.

C. Li, W. Qin, S. Lakshmanan, X. Ma, X. Sun, and B. Xu, “Hydroxyapatite based biocomposite scaffold: A highly biocompatible material for bone regenerationâ€, Saudi J. Biol. Sci., 27(8), 2143–2148, 2020, doi: 10.1016/j.sjbs.2020.05.029.

M.N. Salimi and A. Anuar, “Characterizations of Biocompatible and Bioactive Hydroxyapatite Particlesâ€, Malays. Tech. Univ. Conf. Eng. Amp Technol. 2012 MUCET 2012, 53, 192–196, 2013, doi: 10.1016/j.proeng.2013.02.025.

L. Cheng et al., “Osteoinduction of hydroxyapatite/β-tricalcium phosphate bioceramics in mice with a fractured fibula†Acta Biomater., 6(4), 1569–1574, 2010, doi: 10.1016/j.actbio.2009.10.050.

X. Wei, X. Zhang, Z. Yang, L. Li, and H. Sui, "Osteoinductive potential and antibacterial characteristics of collagen-coated iron oxide nanosphere containing strontium and hydroxyapatite in long term bone fractures", Arab. J. Chem., 14(3), 102984, 2021.

B.-S. Chang et al., “Osteoconduction at porous hydroxyapatite with various pore configurationsâ€, Biomaterials, 21(12), 1291–1298, 2000, doi: 10.1016/S0142-9612(00)00030-2.

Q. Wang et al., “Experimental and simulation studies of strontium/zinc-codoped hydroxyapatite porous scaffolds with excellent osteoinductivity and antibacterial activityâ€, Appl. Surf. Sci., 462, 118–126, 2018, doi: 10.1016/j.apsusc.2018.08.068.

N.A.S. Mohd Pu’ad, P. Koshy, H.Z. Abdullah, M.I. Idris, and T.C. Lee, “Syntheses of hydroxyapatite from natural sourcesâ€, Heliyon, 5(5), e01588, 2019, doi: 10.1016/j.heliyon.2019.e01588.

H. Wu, H. Yan, Y. Quan, H. Zhao, N. Jiang, and C. Yin, "Recent progress and perspectives in bio trickling filters for VOCs and odorous gases treatment", J. Environ. Manage., 222, 409–419, 2018, doi: 10.1016/j.jenvman.2018.06.001.

M. Bin Mobarak et al., “Environmental remediation by hydroxyapatite: Solid state synthesis utilizing waste chicken eggshell and adsorption experiment with Congo red dye†J. Saudi Chem. Soc., 27(5), 101690, Sep. 2023, doi: 10.1016/j.jscs.2023.101690.

R.A. Alsaiari, E.M. Musa, and M.A. Rizk, “Biodiesel production from date seed oil using hydroxyapatite-derived catalyst from waste camel boneâ€, Heliyon, 9(5), e15606, 2023, doi: 10.1016/j.heliyon.2023.e15606.

C.R. Holkar, A.J. Jadhav, D.V. Pinjari, N.M. Mahamuni, and A.B. Pandit, “A critical review on textile wastewater treatments: Possible approachesâ€, J. Environ. Manage., 182, 351–366, 2016, doi: 10.1016/j.jenvman.2016.07.090.

M. Sadat-Shojai, M.-T. Khorasani, E. Dinpanah-Khoshdargi, and A. Jamshidi, “Synthesis methods for nanosized hydroxyapatite with diverse structuresâ€, Acta Biomater., 9(8), 7591–7621, 2013, doi: 10.1016/j.actbio.2013.04.012.

N.A.S. Mohd Pu’ad, P. Koshy, H.Z. Abdullah, M.I. Idris, and T.C. Lee, “Syntheses of hydroxyapatite from natural sourcesâ€, Heliyon, 5(5), e01588, 2019, doi: 10.1016/j.heliyon.2019.e01588.

C.R. Akshata, G. Harichandran, and E. Murugan, “Effect of pectin on the crystallization of strontium substituted HA for bone reconstruction applicationâ€, Colloids Surf. B Biointerfaces, 226, 113312, 2023, doi: 10.1016/j.colsurfb.2023.113312.

C. Li-yun, Z. Chuan-bo, and H. Jian-feng, “Influence of temperature, [Ca2+], Ca/P ratio and ultrasonic power on the crystallinity and morphology of hydroxyapatite nanoparticles prepared with a novel ultrasonic precipitation methodâ€, Mater. Lett., 59(14), 1902–1906, 2005, doi: 10.1016/j.matlet.2005.02.007.

X. Zhao et al., “Preparation of carbon fiber/Mg-doped nano-hydroxyapatite composites under low temperature by pressureless sinteringâ€, Ceram. Int., 48(1), 674–683, 2022, doi: 10.1016/j.ceramint.2021.09.147.

M. Baladi et al., “Green sol–gel synthesis of hydroxyapatite nanoparticles using lemon extract as capping agent and investigation of its anticancer activity against human cancer cell lines (T98, and SHSY5)â€, Arab. J. Chem., 16(4), 104646, 2023, doi: 10.1016/j.arabjc.2023.104646.

A.R. Noviyanti, I. Rahayu, R.P. Fauzia, and Risdiana, "The effect of Mg concentration to the mechanical strength of hydroxyapatite derived from eggshellâ€, Arab. J. Chem., 14(4), 103032, 2021, doi: 10.1016/j.arabjc.2021.103032.

T.S. Trung et al., “Valorization of fish and shrimp wastes to nano-hydroxyapatite/chitosan biocomposite for wastewater treatmentâ€, J. Sci. Adv. Mater. Devices, 7(4), 100485, 2022, doi: 10.1016/j.jsamd.2022.100485.

M. Nurhadi, R. Kusumawardani, W. Wirhanuddin, R. Gunawan, and H. Nur, “Carbon-containing hydroxyapatite obtained from fish bone as low-cost mesoporous material for methylene blue adsorptionâ€, Bull. Chem. React. Eng. Catal., 14(3), 660–671, 2019, doi: 10.9767/bcrec.14.3.5365.660-671.

A.M. Castillo-Paz, M. Gomez-Resendiz, D.F. Cañon-Davila, B.A. Correa-Piña, R. Ramírez-Bon, and M.E. Rodriguez-Garcia, “The effect of temperature on the physical-chemical properties of bovine hydroxyapatite biomimetic scaffolds for bone tissue engineeringâ€, Ceram. Int., 2023, doi: 10.1016/j.ceramint.2023.08.065.

E.A. Ofudje, A. Rajendran, A.I. Adeogun, M.A. Idowu, S.O. Kareem, and D.K. Pattanayak, “Synthesis of organic derived hydroxyapatite scaffold from pig bone waste for tissue engineering applicationsâ€, Adv. Powder Technol., 29(1), 1–8, 2018, doi: 10.1016/j.apt.2017.09.008.

J. Liao, X. He, Y. Zhang, L. Zhang, and Z. He, “The construction of magnetic hydroxyapatite-functionalized pig manure-derived biochar for the efficient uranium separationâ€, Chem. Eng. J., 457, 141367, Feb. 2023, doi: 10.1016/j.cej.2023.141367.

V. Boursiaki et al., “Skeletal deformity of scoliosis in gilthead seabreams (sparus aurata): association with changes to calcium-phosphor hydroxyapatite salts and collagen fibersâ€, Water, 11(2), 2019, doi: 10.3390/w11020257.

P.V. Nam, N.V. Hoa, and T.S. Trung, “Properties of hydroxyapatites prepared from different fish bones: A comparative studyâ€, Ceram. Int., 45(16), 20141–20147, 2019, doi: 10.1016/j.ceramint.2019.06.280.

S. Meski et al., “Synthesis of hydroxyapatite from mussel shells for effective adsorption of aqueous Cd(II)â€, Water Sci. Technol. J. Int. Assoc. Water Pollut. Res., 80(7), 1226–1237, Oct. 2019, doi: 10.2166/wst.2019.366.

R. Ismail et al., “Characterization of PLA/PCL/Green mussel shells hydroxyapatite (HA) biocomposites prepared by chemical blending methodsâ€, Materials, 15(23), 2022, doi: 10.3390/ma15238641.

I. Kusumaningrum and A.N. Asikin, “Karakteristik kerupuk ikan fortifikasi kalsium dari tulang ikan belidaâ€, J. Pengolah. Has. Perikan. Indones., 19 (3), 233–240.

H.F. Putranto, A.N. Asikin, and I. Kusumaningrum, “Karakterisasi tepung tulang ikan belida (Chitala SP.) sebagai sumber kalsium dengan metode hidrolisis proteinâ€, Ziraaah Maj. Ilm. Pertan., 41(1), 11–20, 2016, doi: 10.31602/zmip.v41i1.315.

E. Mahmuda, N. Idiawati, and M.A. Wibowo, “Ekstraksi gelatin pada tulang ikan belida (Chitala lopis) dengan proses perlakuan asam kloridaâ€, J. Kim. Khatulistiwa, 7 (4), 114–123, 2018.

P.R. Minim et al., “The combined effects of binder addition and different sintering methods on the mechanical properties of bovine hydroxyapatiteâ€, J. Mech. Behav. Biomed. Mater., 144, 105993, 2023, doi: 10.1016/j.jmbbm.2023.105993.

E.S. Krishna and G. Suresh, “Development and characterization of acicular nano-hydroxyapatite powder from wet chemical synthesis methodâ€, Int. Conf. Mater. Mech. Model., 56, 781–784, 2022, doi: 10.1016/j.matpr.2022.02.256.

B.M. Ferrairo et al., “Production of bovine hydroxyapatite nanoparticles as a promising biomaterial via mechanochemical and sonochemical methodsâ€, Mater. Chem. Phys., 295, 127046, 2023, doi: 10.1016/j.matchemphys.2022.127046.

H. Chen, R. Wang, L. Qian, H. Liu, J. Wang, and M. Zhu, “Surface modification of urchin-like serried hydroxyapatite with sol-gel method and its application in dental compositesâ€, Compos. Part B Eng., 182, 107621, 2020, doi: 10.1016/j.compositesb.2019.107621.

L.F. Zubieta-Otero and M.E. Rodriguez-Garcia, “Obtention and characterization of nano bio-hydroxyapatite particles by combined hydrothermal alkaline and ultrasonic wet milling methodsâ€, Mater., 1(3), 100019, 2023, doi: 10.1016/j.nxmate.2023.100019.

M.R. Ayatollahi, M.Y. Yahya, H. Asgharzadeh Shirazi, and S.A. Hassan, “Mechanical and tribological properties of hydroxyapatite nanoparticles extracted from natural bovine bone and the bone cement developed by nano-sized bovine hydroxyapatite fillerâ€, Ceram. Int., 41(9), Part A, 10818–10827, 2015, doi: 10.1016/j.ceramint.2015.05.021.

E. Hosseinzadeh, M. Davarpanah, N.H. Nemati, and S. Tavakoli, “Fabrication of a hard tissue replacement using natural hydroxyapatite derived from bovine bones by thermal decomposition methodâ€, Int. J. Organ Transplant. Med., 5(1), 23, 2014.

N.A.M. Barakat, M.S. Khil, A.M. Omran, F.A. Sheikh, and H.Y. Kim, “Extraction of pure natural hydroxyapatite from the bovine bones bio waste by three different methodsâ€, J. Mater. Process. Technol., 209(7), 3408–3415, 2009, doi: 10.1016/j.jmatprotec.2008.07.040.

M. Akram, R. Ahmed, I. Shakir, W.A.W. Ibrahim, and R. Hussain, “Extracting hydroxyapatite and its precursors from natural resourcesâ€, J. Mater. Sci., 49(4), 1461–1475, 2014, doi: 10.1007/s10853-013-7864-x.

R. Murugan, S. Ramakrishna, and K.P. Rao, “Nanoporous hydroxy-carbonate apatite scaffold made of natural boneâ€, Mater. Lett., 60(23), 2844–2847, 2006, doi: 10.1016/j.matlet.2006.01.104.

M.R. Mazlan et al., “Necking mechanism under various sintering process parameters – A reviewâ€, J. Mater. Res. Technol., 23, 2189–2201, 2023, doi: 10.1016/j.jmrt.2023.01.013.

J. Venkatesan, Z.J. Qian, B. Ryu, N.V. Thomas, and S.K. Kim, “A comparative study of thermal calcination and an alkaline hydrolysis method in the isolation of hydroxyapatite from Thunnus obesus boneâ€, Biomed. Mater., 6(3), 035003, Apr. 2011, doi: 10.1088/1748-6041/6/3/035003.

A. Mathirat et al., “Remineralizing potential of natural nano-hydroxyapatite obtained from epinephelus chlorostigma in artificially induced early enamel lesion: An in vitro study.,†Nanomater. Basel Switz., 12(22), 2022, doi: 10.3390/nano12223993.

P. Shi, M. Liu, F. Fan, C. Yu, W. Lu, and M. Du, “Characterization of natural hydroxyapatite originated from fish bone and its biocompatibility with osteoblastsâ€, Mater. Sci. Eng. C, 90, 706–712, 2018, doi: 10.1016/j.msec.2018.04.026.

J. Venkatesan, S.-K. Kim, and S. Kim, Hydroxyapatite from marine fish bone: isolation and characterization techniques. CRC Press Boca Raton, USA, 2016.

B.-H. Chen, K.-I. Chen, M.-L. Ho, H.-N. Chen, W.-C. Chen, and C.-K. Wang, “Synthesis of calcium phosphates and porous hydroxyapatite beads prepared by emulsion methodâ€, Mater. Chem. Phys., 113(1), 365–371, 2009, doi: 10.1016/j.matchemphys.2008.06.040.

P. Shi, M. Liu, F. Fan, C. Yu, W. Lu, and M. Du, “Characterization of natural hydroxyapatite originated from fish bone and its biocompatibility with osteoblastsâ€, Mater. Sci. Eng. C, 90, 706–712, 2018, doi: 10.1016/j.msec.2018.04.026.

M. Sumadiyasa and I.B.S. Manuaba, “Penentuan ukuran kristal menggunakan formula scherrer, williamson-hull plot dan ukuran partikel dengan SEMâ€, Bul Fis FMIPA UNUD Bul., 19(1), 28–35, 2018.

J.G. Miranda-Hernández, H. Herrera-Hernández, C.O. González-Morán, J.N. Rivera Olvera, I. Estrada-Guel, and F. Botello Villa, “Synthesis and characterization of Zn-Nix advanced alloys prepared by mechanical milling and sintering at solid-state processâ€, Adv. Mater. Sci. Eng., 2017, 7967848, 2017, doi: 10.1155/2017/7967848.

H. Dai, D. Chen, and Z. Zheng, “Modelling the sintering neck growth process of metal fibers under the surface diffusion mechanism using the lattice Boltzmann methodâ€, Metals, 9(5), 614, 2019.

K. Nishiyabu, “15 - Powder space holder metal injection molding (PSH-MIM) of micro-porous metals,†in Handbook of Metal Injection Molding, D.F. Heaney, Ed., Woodhead Publishing, 2012, 349–390. doi: 10.1533/9780857096234.3.349.

H.N. Yoshimura, A.L. Molisani, N.E. Narita, P.F. Cesar, and H. Goldenstein, “Porosity dependence of elastic constants in aluminum nitride ceramicsâ€, Mater. Res., 10, 127–133, 2007.

F.F. Lange, “Densification of powder compacts: An unfinished storyâ€, Dev. Ceram. Sci. Eng. Last 50 Years Meet. Celebr. Profr. Sir Richard Brooks 70th Birthd., 28(7), 1509–1516, 2008, doi: 10.1016/j.jeurceramsoc.2007.12.016.

M.N. Rahaman, “Series materials engineering,†(Marcel Dekker, Inc.): 10., New York : M. Dekker, c1995.

Downloads

Published

2023-12-31

Citation Check