Understanding The Role of Diffusion in The Separation of Rare Earth Elements in Water-n-hexane Systems: A Molecular Dynamics Simulation Study


Ari Hardianto(1*), Regaputra Satria Janitra(2), Muhammad Ryan Fauzi(3), Juliandri Juliandri(4), Anni Anggraeni(5), Ukun Mochammad Syukur Soedjanaatmadja(6)

(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Indonesia
(2) Biotechnology Master Program, Postgraduate School, Universitas Padjadjaran, Indonesia
(3) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Indonesia
(4) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Indonesia
(5) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Indonesia
(6) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Indonesia
(*) Corresponding Author

Abstract


Liquid-liquid extraction is one of the methods for separating rare earth elements (REE) in the presence of an extractant. The separation of REE ions, complex with an extractant, involves interfacial migrations that are influenced by the diffusion of the respective ions. Therefore, we performed molecular dynamics simulations on REE ions (La3+, Sm3+, Eu3+, Gd3+, and Tb3+) in a water-n-hexane system to determine if each ion exhibited a distinct diffusion coefficient. By employing molecular dynamics simulations, we calculated diffusion coefficients for these ions based on the Einstein relation. The diffusion coefficients for La3+, Sm3+, Eu3+, Gd3+, and Tb3+ were found to be 4.21×10–6, and 3.96×10–6, 4.57×10–6, 4.17×10–6, and 5.19×10–6 cm2/s, respectively. However, statistical analysis via the Kruskal-Wallis test revealed no significant variance in the diffusion coefficients (p-value greater than 0.05), indicating that diffusion is not a rate-limiting factor in REE separation. The findings suggest that effective mixing during extraction can eliminate the role of diffusion as a differentiating factor in REE separation. Overall, this study offers critical insights into optimizing REE extraction processes

Keywords


Liquid-liquid extraction is one of methods in rare earth elements (REE) separation with the presence of extractant. Separation of REE ion complexed with extractant involve interfacial migration that are influenced by diffusion of respective ions. Therefor

Full Text:

PDF

References


J. Zhang, Z. Zhang, Y.Jiao, H. Yang, Y. Li, J. Zhang, and P. Gao, “The graphene/lanthanum oxide nanocomposites as electrode materials of supercapacitors”, Journal of Power Sources, 419, 99–105, 2019, doi: 10.1016/j.jpowsour.2019.02.059.

O.U. Osazuwa and C.K. Cheng, “Catalytic conversion of methane and carbon dioxide (greenhouse gases) into syngas over samarium-cobalt-trioxides perovskite catalyst”, Journal of Cleaner Production, 148, 202–211, 2017, doi: 10.1016/j.jclepro.2017.01.177.

K. Binnemans, “Interpretation of europium(III) spectra”, Coordination Chemistry Reviews, 295, 1–45, 2015, doi: 10.1016/j.ccr.2015.02.015.

J. Sun, B. Song, Z. Ye, and J. Yuan, “Mitochondria targetable time-gated luminescence probe for singlet oxygen based on a β-diketonate–europium complex”, Inorganic Chemistry, 54(24), 11660–11668, 2015, doi: 10.1021/acs.inorgchem.5b02458.

S. Ariponnammal, S. Shalini, and S. N. Devi, “Structural, surface morphological, and low-temperature studies on gadolinium tri chloride (GdCl3)”, Materials Today: Proceedings, 35, 39–43, 2021, doi: 10.1016/j.matpr.2019.05.406.

L. Blomqvist, G.F. Nordberg, V.M. Nurchi, and J. O. Aaseth, “Gadolinium in medical imaging—usefulness, toxic reactions, and possible countermeasures—a review”, Biomolecules, 12, 742, 2022, doi: 10.3390/biom12060742.

P. Eriksson. Cerium oxide nanoparticles and gadolinium integration : synthesis, characterization and biomedical applications. Linköping: Linköping University Electronic Press, 2019.

H. Li and T. J. Meade, “Molecular magnetic resonance imaging with Gd(III)-based contrast agents: challenges and key advances”, Journal of the American Chemical Society, 141(43), 17025–17041, 2019, doi: 10.1021/jacs.9b09149.

B. Poornaprakash, U. Chalapathi, Y. Suh, S. V.P. Vattikuti, M.S.P. Reddy, and S.-H. Park, “Terbium-doped ZnS quantum dots: Structural, morphological, optical, photoluminescence, and photocatalytic properties”, Ceramics International, 44 (10), 11724–11729, 2018, doi: 10.1016/j.ceramint.2018.03.250.

P. Moeyaert, M. Miguirditchian, M. Masson, B. Dinh, X. Hérès, S. De Sio, and C. Sorel, “Experimental and modelling study of ruthenium extraction with tri-n-butylphosphate in the purex process”, Chemical Engineering Science, 158, 580–586, 2017, doi: 10.1016/j.ces.2016.10.035.

G. Benay and G. Wipff, “Liquid–liquid extraction of uranyl by TBP: The TBP and ions models and related interfacial features revisited by MD and PMF simulations”, J. Phys. Chem. B, 118(11), 3133–3149, 2014, doi: 10.1021/jp411332e.

W. Wang, Y. Pranolo, and C.Y. Cheng, “Recovery of scandium from synthetic red mud leach solutions by solvent extraction with D2EHPA”, Separation and Purification Technology, 108, 96–102, 2013, doi: 10.1016/j.seppur.2013.02.001.

W.-S. Chen, K.-W. Tien, L.-P. Wang, C.-H. Lee, and Y.-F. Chung, “Recovery of gallium from simulated gaas waste etching solutions by solvent extraction”, Sustainability, 12(5), 1765, 2020, doi: 10.3390/su12051765.

C. Tunsu, C. Ekberg, M. Foreman, and T. Retegan, “Studies on the solvent extraction of rare earth metals from fluorescent lamp waste using cyanex 923”, Solvent Extraction and Ion Exchange, 32(6), 650–668, 2014, doi: 10.1080/07366299.2014.925297.

K. Shimojo, N. Aoyagi, T. Saito, H. Okamura, F. Kubota, M. Goto, and H. Naganawa, “Highly efficient extraction separation of lanthanides using a diglycolamic acid extractant”, Anal. Sci., 30(2), 263–269, 2014, doi: 10.2116/analsci.30.263.

A.U. Chowdhury, L. Lin, and B. Doughty, “Hydrogen-bond-driven chemical separations: elucidating the interfacial steps of self-assembly in solvent extraction”, ACS Appl. Mater. Interfaces, 12(28), 32119–32130, 2020, doi: 10.1021/acsami.0c06176.

Z. Liu, X. Ren, R. Tan, Z. Chai, and D. Wang, “Key factors determining efficiency of liquid–liquid extraction: Implications from molecular dynamics simulations of biphasic behaviors of CyMe4-BTPhen and its Am(III) complexes”, J. Phys. Chem. B, 124(9), 1751-1766, 2020, doi: 10.1021/acs.jpcb.9b08447.

P.W. Atkins, J. de Paula, and J.J. Keeler, Atkins’ physical chemistry, Eleventh edition. Oxford New York: Oxford University Press, 2018.

A. Zhou, S. Ju, S. Koppala, L. Xu, J. Peng, and S. Tian, “Extraction of In3+ and Fe3+ from sulfate solutions by using a 3D-printed ‘Y’-shaped microreactor”, Green Processing and Synthesis, 8(1), 163–171, 2019, doi: 10.1515/gps-2018-0045.

P. D’Angelo, A. Zitolo, V. Migliorati, G. Chillemi, M. Duvail, P. Vitorge, S. Abadie, and R. Spezia., “Revised ionic radii of lanthanoid(III) ions in aqueous solution”, Inorg. Chem., 50(10), 4572–4579, 2011, doi: 10.1021/ic200260r.

P.P. Passler and B. M. Rode, “The properties of trivalent praseodymium, neodymium, promethium and samarium ions in water: A quantum mechanical molecular dynamics study”, Chemical Physics Letters, 642, 12–16, 2015, doi: 10.1016/j.cplett.2015.10.065.

L. Martínez, R. Andrade, E.G. Birgin, and J. M. Martínez, “PACKMOL: A package for building initial configurations for molecular dynamics simulations”, J. Comput. Chem., vol. 30, no. 13, pp. 2157–2164, Oct. 2009, doi: 10.1002/jcc.21224.

B.M. Allen, P.K. Predecki, and M. Kumosa, “Integrating open‐source software applications to build molecular dynamics systems”, J. Comput. Chem., 35(9), 756–764, 2014, doi: 10.1002/jcc.23537.

W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W. Impey, and M.L. Klein, “Comparison of simple potential functions for simulating liquid water”, J. Chem. Phys., 79(2), 926–935, 1983, doi: 10.1063/1.445869.

S. Mamatkulov and N. Schwierz, “Force fields for monovalent and divalent metal cations in TIP3P water based on thermodynamic and kinetic properties”, The J. Chem. Phys., 148(7), 074504, 2018, doi: 10.1063/1.5017694.

X. He, V.H. Man, W. Yang, T.S. Lee, and J. Wang, “A fast and high-quality charge model for the next generation general AMBER force field”, J. Chem. Phys., 153(11), 1–11, 2020, doi: 10.1063/5.0019056.

K.G. Sprenger, V.W. Jaeger, and J. Pfaendtner, “The general AMBER force field (GAFF) can accurately predict thermodynamic and transport properties of many ionic liquids”, J. Phys. Chem. B, 119(18), 5882–5895, 2015, doi: 10.1021/acs.jpcb.5b00689.

D.A. Case, H.M. Aktulga, K. Belfon, I.Y. Ben-Shalom, J.T. Berryman, S.R. Brozell, D.S. Cerutti, T.E. Cheatham, III, G.A. Cisneros, V.W.D. Cruzeiro, T.A. Darden, N. Forouzesh, G. Giambaşu, T. Giese, M.K. Gilson, H. Gohlke, A.W. Goetz, J. Harris, S. Izadi, S.A. Izmailov, K. Kasavajhala, M.C. Kaymak, E. King, A. Kovalenko, T. Kurtzman, T.S. Lee, P. Li, C. Lin, J. Liu, T. Luchko, R. Luo, M. Machado, V. Man, M. Manathunga, K.M. Merz, Y. Miao, O. Mikhailovskii, G. Monard, H. Nguyen, K.A. O’Hearn, A. Onufriev, F. Pan, S. Pantano, R. Qi, A. Rahnamoun, D.R. Roe, A. Roitberg, C. Sagui, S. Schott-Verdugo, A. Shajan, J. Shen, C.L. Simmerling, N.R. Skrynnikov, J. Smith, J. Swails, R.C. Walker, J. Wang, J. Wang, H. Wei, X. Wu, Y. Wu, Y. Xiong, Y. Xue, D.M. York, S. Zhao, Q. Zhu, and P.A. Kollman, Amber 2021. San Francisco: University of California, 2021.

D.R. Roe and T.E. Cheatham, “PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data”, J. Chem. Theory Comput., 9(7), 3084–3095, 2013, doi: 10.1021/ct400341p.

E. Mauerhofer, K.P. Zhernosekov, and F. Rösch, “Limiting transport properties of lanthanide and actinide ions in pure water”, Radiochimica Acta, 91(8), 473–478, 2003, doi: 10.1524/ract.91.8.473.20009.

F. Puosi, A. Pasturel, N. Jakse, and D. Leporini, “Communication: Fast dynamics perspective on the breakdown of the Stokes-Einstein law in fragile glassformers”, J. Chem. Phys., 148(13), 131102, 2018, doi: 10.1063/1.5025614.

H. Liu, “Free volume power law for transport properties of hard sphere fluid”, Journal of Applied Physics, 129(4), 044701, 2021, doi: 10.1063/5.0039615.

P.R. Danesi, R. Chiarizia, and C.F. Coleman, “The kinetics of metal solvent extraction”, CRC Critical Reviews in Analytical Chemistry, 10(1), 1–126, 1980, doi: 10.1080/10408348008542724.

B. Fourest, J. Duplessis, and F. David, “Comparison of Diffusion Coefficients and Hydrated Radii for some Trivalent Lanthanide and Actinide Ions in Aqueous Solution”, Radiochimica Acta, 36(4), 191–196, 1984, doi: 10.1524/ract.1984.36.4.191.

W.W. Lukens, M. Speldrich, P. Yang, T.J. Duignan, J. Autschbach, and P. Kögerler, “The roles of 4f- and 5f-orbitals in bonding: a magnetochemical, crystal field, density functional theory, and multi-reference wavefunction study”, Dalton Trans., 45(28), 11508–11521, 2016, doi: 10.1039/C6DT00634E.




DOI: https://doi.org/10.15575/ak.v10i2.30680

Copyright (c) 2023 Ari Hardianto, REGAPUTRA SATRIA JANITRA, Muhammad Ryan Fauzi, Juliandri Juliandri, Anni Anggraeni, Ukun M.S. Soedjanaatmadja

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

CrossrefSINTAGoogle ScholarIndonesia One Search

View My Stats

 

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.