Understanding The Role of Diffusion in The Separation of Rare Earth Elements in Water-n-hexane Systems: A Molecular Dynamics Simulation Study
DOI:
https://doi.org/10.15575/ak.v10i2.30680Keywords:
Liquid-liquid extraction is one of methods in rare earth elements (REE) separation with the presence of extractant. Separation of REE ion complexed with extractant involve interfacial migration that are influenced by diffusion of respective ions. ThereforAbstract
References
J. Zhang, Z. Zhang, Y.Jiao, H. Yang, Y. Li, J. Zhang, and P. Gao, “The graphene/lanthanum oxide nanocomposites as electrode materials of supercapacitorsâ€, Journal of Power Sources, 419, 99–105, 2019, doi: 10.1016/j.jpowsour.2019.02.059.
O.U. Osazuwa and C.K. Cheng, “Catalytic conversion of methane and carbon dioxide (greenhouse gases) into syngas over samarium-cobalt-trioxides perovskite catalystâ€, Journal of Cleaner Production, 148, 202–211, 2017, doi: 10.1016/j.jclepro.2017.01.177.
K. Binnemans, “Interpretation of europium(III) spectraâ€, Coordination Chemistry Reviews, 295, 1–45, 2015, doi: 10.1016/j.ccr.2015.02.015.
J. Sun, B. Song, Z. Ye, and J. Yuan, “Mitochondria targetable time-gated luminescence probe for singlet oxygen based on a β-diketonate–europium complexâ€, Inorganic Chemistry, 54(24), 11660–11668, 2015, doi: 10.1021/acs.inorgchem.5b02458.
S. Ariponnammal, S. Shalini, and S. N. Devi, “Structural, surface morphological, and low-temperature studies on gadolinium tri chloride (GdCl3)â€, Materials Today: Proceedings, 35, 39–43, 2021, doi: 10.1016/j.matpr.2019.05.406.
L. Blomqvist, G.F. Nordberg, V.M. Nurchi, and J. O. Aaseth, “Gadolinium in medical imaging—usefulness, toxic reactions, and possible countermeasures—a reviewâ€, Biomolecules, 12, 742, 2022, doi: 10.3390/biom12060742.
P. Eriksson. Cerium oxide nanoparticles and gadolinium integration : synthesis, characterization and biomedical applications. Linköping: Linköping University Electronic Press, 2019.
H. Li and T. J. Meade, “Molecular magnetic resonance imaging with Gd(III)-based contrast agents: challenges and key advancesâ€, Journal of the American Chemical Society, 141(43), 17025–17041, 2019, doi: 10.1021/jacs.9b09149.
B. Poornaprakash, U. Chalapathi, Y. Suh, S. V.P. Vattikuti, M.S.P. Reddy, and S.-H. Park, “Terbium-doped ZnS quantum dots: Structural, morphological, optical, photoluminescence, and photocatalytic propertiesâ€, Ceramics International, 44 (10), 11724–11729, 2018, doi: 10.1016/j.ceramint.2018.03.250.
P. Moeyaert, M. Miguirditchian, M. Masson, B. Dinh, X. Hérès, S. De Sio, and C. Sorel, “Experimental and modelling study of ruthenium extraction with tri-n-butylphosphate in the purex processâ€, Chemical Engineering Science, 158, 580–586, 2017, doi: 10.1016/j.ces.2016.10.035.
G. Benay and G. Wipff, “Liquid–liquid extraction of uranyl by TBP: The TBP and ions models and related interfacial features revisited by MD and PMF simulationsâ€, J. Phys. Chem. B, 118(11), 3133–3149, 2014, doi: 10.1021/jp411332e.
W. Wang, Y. Pranolo, and C.Y. Cheng, “Recovery of scandium from synthetic red mud leach solutions by solvent extraction with D2EHPAâ€, Separation and Purification Technology, 108, 96–102, 2013, doi: 10.1016/j.seppur.2013.02.001.
W.-S. Chen, K.-W. Tien, L.-P. Wang, C.-H. Lee, and Y.-F. Chung, “Recovery of gallium from simulated gaas waste etching solutions by solvent extractionâ€, Sustainability, 12(5), 1765, 2020, doi: 10.3390/su12051765.
C. Tunsu, C. Ekberg, M. Foreman, and T. Retegan, “Studies on the solvent extraction of rare earth metals from fluorescent lamp waste using cyanex 923â€, Solvent Extraction and Ion Exchange, 32(6), 650–668, 2014, doi: 10.1080/07366299.2014.925297.
K. Shimojo, N. Aoyagi, T. Saito, H. Okamura, F. Kubota, M. Goto, and H. Naganawa, “Highly efficient extraction separation of lanthanides using a diglycolamic acid extractantâ€, Anal. Sci., 30(2), 263–269, 2014, doi: 10.2116/analsci.30.263.
A.U. Chowdhury, L. Lin, and B. Doughty, “Hydrogen-bond-driven chemical separations: elucidating the interfacial steps of self-assembly in solvent extractionâ€, ACS Appl. Mater. Interfaces, 12(28), 32119–32130, 2020, doi: 10.1021/acsami.0c06176.
Z. Liu, X. Ren, R. Tan, Z. Chai, and D. Wang, “Key factors determining efficiency of liquid–liquid extraction: Implications from molecular dynamics simulations of biphasic behaviors of CyMe4-BTPhen and its Am(III) complexesâ€, J. Phys. Chem. B, 124(9), 1751-1766, 2020, doi: 10.1021/acs.jpcb.9b08447.
P.W. Atkins, J. de Paula, and J.J. Keeler, Atkins’ physical chemistry, Eleventh edition. Oxford New York: Oxford University Press, 2018.
A. Zhou, S. Ju, S. Koppala, L. Xu, J. Peng, and S. Tian, “Extraction of In3+ and Fe3+ from sulfate solutions by using a 3D-printed ‘Y’-shaped microreactorâ€, Green Processing and Synthesis, 8(1), 163–171, 2019, doi: 10.1515/gps-2018-0045.
P. D’Angelo, A. Zitolo, V. Migliorati, G. Chillemi, M. Duvail, P. Vitorge, S. Abadie, and R. Spezia., “Revised ionic radii of lanthanoid(III) ions in aqueous solutionâ€, Inorg. Chem., 50(10), 4572–4579, 2011, doi: 10.1021/ic200260r.
P.P. Passler and B. M. Rode, “The properties of trivalent praseodymium, neodymium, promethium and samarium ions in water: A quantum mechanical molecular dynamics studyâ€, Chemical Physics Letters, 642, 12–16, 2015, doi: 10.1016/j.cplett.2015.10.065.
L. MartÃnez, R. Andrade, E.G. Birgin, and J. M. MartÃnez, “PACKMOL: A package for building initial configurations for molecular dynamics simulationsâ€, J. Comput. Chem., vol. 30, no. 13, pp. 2157–2164, Oct. 2009, doi: 10.1002/jcc.21224.
B.M. Allen, P.K. Predecki, and M. Kumosa, “Integrating openâ€source software applications to build molecular dynamics systemsâ€, J. Comput. Chem., 35(9), 756–764, 2014, doi: 10.1002/jcc.23537.
W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W. Impey, and M.L. Klein, “Comparison of simple potential functions for simulating liquid waterâ€, J. Chem. Phys., 79(2), 926–935, 1983, doi: 10.1063/1.445869.
S. Mamatkulov and N. Schwierz, “Force fields for monovalent and divalent metal cations in TIP3P water based on thermodynamic and kinetic propertiesâ€, The J. Chem. Phys., 148(7), 074504, 2018, doi: 10.1063/1.5017694.
X. He, V.H. Man, W. Yang, T.S. Lee, and J. Wang, “A fast and high-quality charge model for the next generation general AMBER force fieldâ€, J. Chem. Phys., 153(11), 1–11, 2020, doi: 10.1063/5.0019056.
K.G. Sprenger, V.W. Jaeger, and J. Pfaendtner, “The general AMBER force field (GAFF) can accurately predict thermodynamic and transport properties of many ionic liquidsâ€, J. Phys. Chem. B, 119(18), 5882–5895, 2015, doi: 10.1021/acs.jpcb.5b00689.
D.A. Case, H.M. Aktulga, K. Belfon, I.Y. Ben-Shalom, J.T. Berryman, S.R. Brozell, D.S. Cerutti, T.E. Cheatham, III, G.A. Cisneros, V.W.D. Cruzeiro, T.A. Darden, N. Forouzesh, G. Giambaşu, T. Giese, M.K. Gilson, H. Gohlke, A.W. Goetz, J. Harris, S. Izadi, S.A. Izmailov, K. Kasavajhala, M.C. Kaymak, E. King, A. Kovalenko, T. Kurtzman, T.S. Lee, P. Li, C. Lin, J. Liu, T. Luchko, R. Luo, M. Machado, V. Man, M. Manathunga, K.M. Merz, Y. Miao, O. Mikhailovskii, G. Monard, H. Nguyen, K.A. O’Hearn, A. Onufriev, F. Pan, S. Pantano, R. Qi, A. Rahnamoun, D.R. Roe, A. Roitberg, C. Sagui, S. Schott-Verdugo, A. Shajan, J. Shen, C.L. Simmerling, N.R. Skrynnikov, J. Smith, J. Swails, R.C. Walker, J. Wang, J. Wang, H. Wei, X. Wu, Y. Wu, Y. Xiong, Y. Xue, D.M. York, S. Zhao, Q. Zhu, and P.A. Kollman, Amber 2021. San Francisco: University of California, 2021.
D.R. Roe and T.E. Cheatham, “PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory dataâ€, J. Chem. Theory Comput., 9(7), 3084–3095, 2013, doi: 10.1021/ct400341p.
E. Mauerhofer, K.P. Zhernosekov, and F. Rösch, “Limiting transport properties of lanthanide and actinide ions in pure waterâ€, Radiochimica Acta, 91(8), 473–478, 2003, doi: 10.1524/ract.91.8.473.20009.
F. Puosi, A. Pasturel, N. Jakse, and D. Leporini, “Communication: Fast dynamics perspective on the breakdown of the Stokes-Einstein law in fragile glassformersâ€, J. Chem. Phys., 148(13), 131102, 2018, doi: 10.1063/1.5025614.
H. Liu, “Free volume power law for transport properties of hard sphere fluidâ€, Journal of Applied Physics, 129(4), 044701, 2021, doi: 10.1063/5.0039615.
P.R. Danesi, R. Chiarizia, and C.F. Coleman, “The kinetics of metal solvent extractionâ€, CRC Critical Reviews in Analytical Chemistry, 10(1), 1–126, 1980, doi: 10.1080/10408348008542724.
B. Fourest, J. Duplessis, and F. David, “Comparison of Diffusion Coefficients and Hydrated Radii for some Trivalent Lanthanide and Actinide Ions in Aqueous Solutionâ€, Radiochimica Acta, 36(4), 191–196, 1984, doi: 10.1524/ract.1984.36.4.191.
W.W. Lukens, M. Speldrich, P. Yang, T.J. Duignan, J. Autschbach, and P. Kögerler, “The roles of 4f- and 5f-orbitals in bonding: a magnetochemical, crystal field, density functional theory, and multi-reference wavefunction studyâ€, Dalton Trans., 45(28), 11508–11521, 2016, doi: 10.1039/C6DT00634E.
Downloads
Published
Issue
Section
Citation Check
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).