EVALUATION OF MINERAL-BASED HYDROXYAPATITE/ZnO COMPOSITES AS PHOTOCATALISTS FOR METHYLEN BLUE DEGRADATION
DOI:
https://doi.org/10.15575/ak.v11i2.37886Keywords:
degradation, photocatalyst, hydroxyapatite, methylene blue, zinc oxideAbstract
References
Y. C. Chung and C. Y. Chen, “Degradation of azo dye reactive violet 5 by TiO2 photocatalysis,†Environmental Chemistry Letters, 7(4): 347–352, 2009, https://doi.org/10.1007/s10311-008-0178-6
R. Silvia, E. Nasra, B. Oktavia, and S. B. Etika, “Penyerapan Zat Warna Malachite Green Menggunakan Kulit Pisang Kepok (Musa Balbisiana Colla) Sebagai Biosorben Dengan Metode Batchâ€, Periodic Chemistry Journal of Universitas Negeri Padang, 9(2), 2020
J. P. Essien et al.,â€Ecotoxicological status and risk assessment of heavy metals in municipal solid wastes dumpsite impacted soil in Nigeriaâ€. In Environmental Nanotechnology, Monitoring and Management, 11, 2019, https://doi.org/10.1016/j.enmm.2019.100215
R. Srivastava, and I. R. Sofi, “Impact of synthetic dyes on human health and environmentâ€, Hershey, PA: IGI Global, 2020.
I. A. Zuhaela et al., “The Chemical Kinetics Studies of Methylene Blue Degradation Treated in Dielectric Barrier Discharge (DBD) Plasma With and Without TiO2 Photocatalystâ€, Journal of Physics: Conference Series, 1912 012009, 2021, https://doi.org/10.1088/1742-6596/1912/1/012009
A. P. L. Batista et al., “Preparation of CuO/SiO2 and photocatalytic activity by degradation of methylene blueâ€, Environmental Chemistry Letters, 8(1): 63-67, 2010, https://doi.org/10.1007/s10311-008-0192-8
P. O. Oladoye et al., “Methylene blue dye: Toxicity and potential technologies for elimination from (waste) waterâ€, Results in Engineering, 16(6), 2022, http://dx.doi.org/10.1016/j.rineng.2022.100678
B. Priya et al., “Photocatalytic mineralization and degradation kinetics of ampicillin and oxytetracycline antibiotics using graphene sand composite and chitosan supported BiOClâ€. Journal of Molecular Catalysis A: Chemical, 423, 400-413 2016, https://doi.org/10.1016/j.molcata.2016.07.043
S. S. Bismo, R. Arbianti, and Z. Sari, “Phenol Removal by Combination of Adsorption and Photocatalysis Process Using Activated Carbon and TiO2â€, J Teknologi, 4, 303–311, 2006.
Z. Mojgan, Z. Kalateh, and H. Alikhani, “Efficiency evaluation of NaY zeolite and TiO2/NaY zeolite in removal of methylene blue dye from aqueous solutionsâ€, Iranian Journal Environmental Health Science and Enggineering, 8(3), 2011.
W. Liu et al., “Ag3PO4/ZnO: An efficient visible-light-sensitized composite with its application in photocatalytic degradation of Rhodamine Bâ€, Materials Research Bulletin, 48(1), 106-113, 2013, https://doi.org/10.1016/j.materresbull.2012.10.015
H. Sutanto, and S. Wibowo, Semikonduktor Fotokatalis Seng Oksida dan Titania (Sintesis, Deposisi dan Aplikasi). Semarang: Penerbit Telescope, 2015.
V. T. Le et al., “A Novel Cross-Linked Magnetic Hydroxyapatite/Chitosan Composite: Preparation, Characterization, and Application for Ni (II) Ion Removal from Aqueous Solutionâ€, Water, Air, and Soil Pollution, 229, 101-111, 2018, https://doi.org/10.1007/s11270-018-3762-9
D. V. Dat et al., “Synthesis of calcium-deficient carbonated hydroxyapatite as promising sorbent for removal of lead ionsâ€, Journal of Nano Research, 45, 124-133, 2017. https://doi.org/10.4028/www.scientific.net/JNanoR.45.124
W. Liu et al., “Facile synthesis of spherical nano hydroxyapatite and its application in photocatalytic degradation of methyl orange dye under UV irradiationâ€, Materials Letters, 178, 15-17, 2016, https://doi.org/10.1016/j.matlet.2016.04.175
S. Valizadeh, M. H. Rasoulifard, and M. S. S. Dorraji, “Modified Fe3O4-hydroxyapatite nanocomposites as heterogeneous catalysts in three UV, Vis and Fenton like degradation systemsâ€, Applied Surface Science, 319, 358–366, 2014, https://doi.org/10.1016/j.apsusc.2014.07.139
C. Piccirillo et al., “Calcium phosphate-based materials of natural origin showing photocatalytic activityâ€, Journal of Materials Chemistry A, 1(21), 6452-6461, 2013, https://doi.org/10.1039/c3ta10673j
C. B. Ong, L. Y. Ng, and A. W. Mohammad, â€A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applicationsâ€, In Renewable and Sustainable Energy Reviews, 81(1), 536-551, 2018, https://doi.org/10.1016/j.rser.2017.08.020
M. J. Sampaio et al., “Ag-loaded ZnO materials for photocatalytic water treatmentâ€, Chemical Engineering Journal, 318, 95-102, 2017, https://doi.org/10.1016/j.cej.2016.05.105
T. T. T. L. Hoang, N. Insin, and N. Sukpirom, “Catalytic activity of silver nanoparticles anchored on layered double hydroxides and hydroxyapatiteâ€, Inorganic Chemistry Communications, 121, 108199, 2020, https://doi.org/10.1016/j.inoche.2020.108199
L. Xiaofang et al., “Hollow hydroxyapatite microspheres modified by CdS nanoparticles for efficiently photocatalytic degradation of tetracyclineâ€, Journal of the Taiwan Institute of Chemical Engineers, 106, 148–158, 2020, https://doi.org/10.1016/j.jtice.2019.10.023
Y. Pang et al., “Facilely synthesized cobalt doped hydroxyapatite as hydroxyl promoted peroxymonosulfate activator for degradation of Rhodamine Bâ€, Journal of Hazardous Materials, 384, 121447, 2020, https://doi.org/10.1016/j.jhazmat.2019.121447
R. Zou et al., “Novel and efficient red phosphorus/hollow hydroxyapatite microsphere photocatalyst for fast removal of antibiotic pollutantsâ€, Journal of Physics and Chemistry of Solids, 139, 109353, 2020, https://doi.org/10.1016/j.jpcs.2020.109353
P. Raizda et al., “Preparation and photocatalytic activity of hydroxyapatite supported BiOCl nanocomposite for oxytetracyline removalâ€, Advanced Materials Letters, 7(4), 2016, https://doi.org/10.5185/amlett.2016.5847
K. M. Lee et al., “Recent developments of zinc oxide based photocatalyst in water treatment technology: A reviewâ€, Water Research, 88, 428–448, 2016, https://doi.org/10.1016/j.watres.2015.09.045
I. Triandini, Sintesis dan Karakterisasi Nanokomposit Hidroksiapatit-ZnO dari Batu Kapur dengan Metode Presipitasi. Skripsi, Cimahi: Fakultas Sains dan Informatika Universitas Jenderal Achmad Yani, 2023.
V. D. Doan et al., “Nanosized Zincated Hydroxyapatite as a Promising Heterogeneous Photo-Fenton-Like Catalyst for Methylene Blue Degradationâ€, Advances in Materials Science and Engineering, 2019, https://doi.org/10.1155/2019/5978149
D. P. Rahayu and E. Nurhayati, “Pemanfaatan Activated Spent Bleaching Earth sebagai Adsorben untuk Menyisihkan Rhodamine-B: Studi Adsorpsi Secara Batchâ€, JURNAL ENVIROTEK, 15(1), 2023, https://doi.org/10.33005/envirotek.v15i1.227
S. Kalam et al., “Surfactant Adsorption Isotherms: A Reviewâ€, In ACS Omega, 6(48), 2021, https://doi.org/10.1021/acsomega.1c04661
F. Alakhras et al., “A Comparative study of photocatalytic degradation of Rhodamine B using natural-based zeolite compositesâ€, Surfaces and Interfaces, 20,100611, 2020, https://doi.org/10.1016/j.surfin.2020.100611
L. J. Kusumawardani, A. Iryani, and E. Yulianti, “Photocatalytic Decolorization of Methylene Blue Using TiO2-Fe Photocatalyst under Visible and Sunlight Irradiation,†AIP Conf. Proc, 2638, 2022, https://doi.org/10.1063/5.0104096
L. J. Kusumawardani and Y. Syahputri, “Study of structural and optical properties of Fe(III)-doped TiO2 prepared by sol-gel methodâ€, IOP Conference Series: Earth and Environmental Science, 299(1), 012066, 2019, https://doi.org/10.1088/1755-1315/299/1/012066
D. Zhang et al., “Transition-Metal-Ion (Fe, Co, Cr, Mn, Etc.) Doping of TiO2 Nanotubes: A General Approachâ€, Inorganic Chemistry, 58(19), 12511–12515, 2019, https://doi.org/10.1021/acs.inorgchem.9b01889
B. Pava-Gomez, X. Vargas-Ramirez, and C. Diaz-Uribe, “Physicochemical study of adsorption and photodegradation processes of methylene blue on copper-doped TiO2 filmsâ€, Journal of Photochemistry and Photobiology A: Chemistry, 360, 13–25, 2018, https://doi.org/10.1016/j.jphotochem.2018.04.022
R. S. Rini, I. Fajriati, and A. A. Kiswandono, “Effect of Hydrogen Peroxide (H2O2) Addition on the Effectiveness of Naphthol Photodegradation Using TiO2 Photocatalysisâ€, Analytical and Environmental Chemistry, 4(1), 26–40, 2019.
M. I. Prakoso et al., “Photodegradation of Methyl Orange (MO) Using TiO2 /Zeolite from Coal Fly Ash Waste Under Acidic Conditions and H2O2 Additionâ€, Helium: Journal of Science and Applied Chemistry, 04(01), 2024, https://journal.unpak.ac.id/index.php/he_jsac
A. P. Aziztyana et al., “Optimisation of Methyl Orange Photodegradation Using TiO2-Zeolite Photocatalyst and H2O2 in Acid Conditionâ€, in IOP Conference Series: Materials Science and Engineering, 2019, https://doi.org/10.1088/1757-899x/546/4/042047
F. Buazar, S. Alipouryan, and S. A. Hossieni, “Photodegradation of odorous 2-mercaptobenzoxazole through zinc oxide/hydroxyapatite nanocompositeâ€, Applied Nanoscience (Switzerland), 5(6), 719–729, 2015, https://doi.org/10.1007/s13204-014-0368-4
K. Allam, A. El Bouari, B. Belhorma, and L. Bih, “Removal of methylene blue from water using hydroxyapatite submitted to microwave irradiation,†Journal of Water Resource and Protection, 8(3), 358–371, 2016, https://doi.org/10.4236/jwarp.2016.83030
A. F. Alkaim et al, “Effect of pH on Adsorption and Photocatalytic Degradation Efficiency of Different Catalysts on Removal of Methylene Blueâ€, Asian Journal Of Chemistry, 26(24), 8445-8448, 2014,https://doi.org/10.14233/ajchem.2014.17908
A. B. D. Nandiyanto, R. Ragadhita, and J. Yunas, “Adsorption isotherm of densed monoclinic tungsten trioxide nanoparticlesâ€, Sains Malaysiana, 49(12), 2881–2890, 2020, https://doi.org/10.17576/jsm-2020-4912-01
C. Oliveira et al., “Zinc (II) Modified Hydroxyapatites For Tetracycline Removal: Zn (II) Doping or ZnO Deposition and Their Influence in The Adsorptionâ€, Polyhedron, 194, 114879, 2020, https://doi.org/10.1016/j.poly.2020.114879
L. J. Kusumawardani et al., “Optimization And Mechanism Elucidation Of Catalytic Photodegradation Methylene Blue By TiO2/Zeolite Coal Fly Ash Nanocomposite Under H2O2 Presenceâ€, Jurnal Sains Natural, 14, 98–108, 2024, https://doi.org/10.31938/jsn.v
T. A. Kusumawati, A. Setiawan, and D. Dermawan, “Studi Kinetika Adsorpsi Metilen Biru Menggunakan Adsorben Komposit Hidroksiapatit – Karbon Aktif Tongkol Jagungâ€, Conference Proceding on Waste Treatment Technology, 6(1), 2023.
Downloads
Published
Issue
Section
Citation Check
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).