EVALUATION OF MINERAL-BASED HYDROXYAPATITE/ZnO COMPOSITES AS PHOTOCATALISTS FOR METHYLEN BLUE DEGRADATION

Arie Hardian, Aulia Zakiyatun Nafisah, Teguh Karya, Riyan Halim, Anceu Murniati, Dani Gustaman Syarif, Atiek Rostika Noviyanti, Mita Nurhayati, Jasmansyah Jasmansyah, Muhammad Reza

Abstract


The use of dyes in the textile industry has increased significantly, raising concerns about their potential to pollute the environment and harm human health. Methylene blue is a widely used synthetic dye, necessitating effective methods for its degradation. Photodegradation is a promising approach to decompose dyes into simpler, less harmful compounds. In this study, hydroxyapatite combined with ZnO was employed as a photocatalyst material to enhance photocatalytic performance. The research aims to degrade methylene blue using a Hydroxyapatite/ZnO (HAp/ZnO) nanocomposite through photodegradation. The optimization of the photodegradation process was investigated by varying irradiation time, methylene blue concentration, and pH. The optimum degradation of methylene blue was achieved using 20 mg of HAp/ZnO nanocomposite at an irradiation time of 120 minutes, an initial methylene blue concentration of 5 ppm, and pH 7. Adsorption isotherm modeling revealed that the process followed the Langmuir isotherm model, with a maximum adsorption capacity (qmax) of 0.3353 mg/g. The degradation followed pseudo-second-order kinetics with a reaction rate constant of 4.0026×105 L/mol·s.

Keywords


degradation; photocatalyst; hydroxyapatite; methylene blue; zinc oxide

Full Text:

PDF

References


Y. C. Chung and C. Y. Chen, “Degradation of azo dye reactive violet 5 by TiO2 photocatalysis,” Environmental Chemistry Letters, 7(4): 347–352, 2009, https://doi.org/10.1007/s10311-008-0178-6

R. Silvia, E. Nasra, B. Oktavia, and S. B. Etika, “Penyerapan Zat Warna Malachite Green Menggunakan Kulit Pisang Kepok (Musa Balbisiana Colla) Sebagai Biosorben Dengan Metode Batch”, Periodic Chemistry Journal of Universitas Negeri Padang, 9(2), 2020

J. P. Essien et al.,”Ecotoxicological status and risk assessment of heavy metals in municipal solid wastes dumpsite impacted soil in Nigeria”. In Environmental Nanotechnology, Monitoring and Management, 11, 2019, https://doi.org/10.1016/j.enmm.2019.100215

R. Srivastava, and I. R. Sofi, “Impact of synthetic dyes on human health and environment”, Hershey, PA: IGI Global, 2020.

I. A. Zuhaela et al., “The Chemical Kinetics Studies of Methylene Blue Degradation Treated in Dielectric Barrier Discharge (DBD) Plasma With and Without TiO2 Photocatalyst”, Journal of Physics: Conference Series, 1912 012009, 2021, https://doi.org/10.1088/1742-6596/1912/1/012009

A. P. L. Batista et al., “Preparation of CuO/SiO2 and photocatalytic activity by degradation of methylene blue”, Environmental Chemistry Letters, 8(1): 63-67, 2010, https://doi.org/10.1007/s10311-008-0192-8

P. O. Oladoye et al., “Methylene blue dye: Toxicity and potential technologies for elimination from (waste) water”, Results in Engineering, 16(6), 2022, http://dx.doi.org/10.1016/j.rineng.2022.100678

B. Priya et al., “Photocatalytic mineralization and degradation kinetics of ampicillin and oxytetracycline antibiotics using graphene sand composite and chitosan supported BiOCl”. Journal of Molecular Catalysis A: Chemical, 423, 400-413 2016, https://doi.org/10.1016/j.molcata.2016.07.043

S. S. Bismo, R. Arbianti, and Z. Sari, “Phenol Removal by Combination of Adsorption and Photocatalysis Process Using Activated Carbon and TiO2”, J Teknologi, 4, 303–311, 2006.

Z. Mojgan, Z. Kalateh, and H. Alikhani, “Efficiency evaluation of NaY zeolite and TiO2/NaY zeolite in removal of methylene blue dye from aqueous solutions”, Iranian Journal Environmental Health Science and Enggineering, 8(3), 2011.

W. Liu et al., “Ag3PO4/ZnO: An efficient visible-light-sensitized composite with its application in photocatalytic degradation of Rhodamine B”, Materials Research Bulletin, 48(1), 106-113, 2013, https://doi.org/10.1016/j.materresbull.2012.10.015

H. Sutanto, and S. Wibowo, Semikonduktor Fotokatalis Seng Oksida dan Titania (Sintesis, Deposisi dan Aplikasi). Semarang: Penerbit Telescope, 2015.

V. T. Le et al., “A Novel Cross-Linked Magnetic Hydroxyapatite/Chitosan Composite: Preparation, Characterization, and Application for Ni (II) Ion Removal from Aqueous Solution”, Water, Air, and Soil Pollution, 229, 101-111, 2018, https://doi.org/10.1007/s11270-018-3762-9

D. V. Dat et al., “Synthesis of calcium-deficient carbonated hydroxyapatite as promising sorbent for removal of lead ions”, Journal of Nano Research, 45, 124-133, 2017. https://doi.org/10.4028/www.scientific.net/JNanoR.45.124

W. Liu et al., “Facile synthesis of spherical nano hydroxyapatite and its application in photocatalytic degradation of methyl orange dye under UV irradiation”, Materials Letters, 178, 15-17, 2016, https://doi.org/10.1016/j.matlet.2016.04.175

S. Valizadeh, M. H. Rasoulifard, and M. S. S. Dorraji, “Modified Fe3O4-hydroxyapatite nanocomposites as heterogeneous catalysts in three UV, Vis and Fenton like degradation systems”, Applied Surface Science, 319, 358–366, 2014, https://doi.org/10.1016/j.apsusc.2014.07.139

C. Piccirillo et al., “Calcium phosphate-based materials of natural origin showing photocatalytic activity”, Journal of Materials Chemistry A, 1(21), 6452-6461, 2013, https://doi.org/10.1039/c3ta10673j

C. B. Ong, L. Y. Ng, and A. W. Mohammad, ”A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications”, In Renewable and Sustainable Energy Reviews, 81(1), 536-551, 2018, https://doi.org/10.1016/j.rser.2017.08.020

M. J. Sampaio et al., “Ag-loaded ZnO materials for photocatalytic water treatment”, Chemical Engineering Journal, 318, 95-102, 2017, https://doi.org/10.1016/j.cej.2016.05.105

T. T. T. L. Hoang, N. Insin, and N. Sukpirom, “Catalytic activity of silver nanoparticles anchored on layered double hydroxides and hydroxyapatite”, Inorganic Chemistry Communications, 121, 108199, 2020, https://doi.org/10.1016/j.inoche.2020.108199

L. Xiaofang et al., “Hollow hydroxyapatite microspheres modified by CdS nanoparticles for efficiently photocatalytic degradation of tetracycline”, Journal of the Taiwan Institute of Chemical Engineers, 106, 148–158, 2020, https://doi.org/10.1016/j.jtice.2019.10.023

Y. Pang et al., “Facilely synthesized cobalt doped hydroxyapatite as hydroxyl promoted peroxymonosulfate activator for degradation of Rhodamine B”, Journal of Hazardous Materials, 384, 121447, 2020, https://doi.org/10.1016/j.jhazmat.2019.121447

R. Zou et al., “Novel and efficient red phosphorus/hollow hydroxyapatite microsphere photocatalyst for fast removal of antibiotic pollutants”, Journal of Physics and Chemistry of Solids, 139, 109353, 2020, https://doi.org/10.1016/j.jpcs.2020.109353

P. Raizda et al., “Preparation and photocatalytic activity of hydroxyapatite supported BiOCl nanocomposite for oxytetracyline removal”, Advanced Materials Letters, 7(4), 2016, https://doi.org/10.5185/amlett.2016.5847

K. M. Lee et al., “Recent developments of zinc oxide based photocatalyst in water treatment technology: A review”, Water Research, 88, 428–448, 2016, https://doi.org/10.1016/j.watres.2015.09.045

I. Triandini, Sintesis dan Karakterisasi Nanokomposit Hidroksiapatit-ZnO dari Batu Kapur dengan Metode Presipitasi. Skripsi, Cimahi: Fakultas Sains dan Informatika Universitas Jenderal Achmad Yani, 2023.

V. D. Doan et al., “Nanosized Zincated Hydroxyapatite as a Promising Heterogeneous Photo-Fenton-Like Catalyst for Methylene Blue Degradation”, Advances in Materials Science and Engineering, 2019, https://doi.org/10.1155/2019/5978149

D. P. Rahayu and E. Nurhayati, “Pemanfaatan Activated Spent Bleaching Earth sebagai Adsorben untuk Menyisihkan Rhodamine-B: Studi Adsorpsi Secara Batch”, JURNAL ENVIROTEK, 15(1), 2023, https://doi.org/10.33005/envirotek.v15i1.227

S. Kalam et al., “Surfactant Adsorption Isotherms: A Review”, In ACS Omega, 6(48), 2021, https://doi.org/10.1021/acsomega.1c04661

F. Alakhras et al., “A Comparative study of photocatalytic degradation of Rhodamine B using natural-based zeolite composites”, Surfaces and Interfaces, 20,100611, 2020, https://doi.org/10.1016/j.surfin.2020.100611

L. J. Kusumawardani, A. Iryani, and E. Yulianti, “Photocatalytic Decolorization of Methylene Blue Using TiO2-Fe Photocatalyst under Visible and Sunlight Irradiation,” AIP Conf. Proc, 2638, 2022, https://doi.org/10.1063/5.0104096

L. J. Kusumawardani and Y. Syahputri, “Study of structural and optical properties of Fe(III)-doped TiO2 prepared by sol-gel method”, IOP Conference Series: Earth and Environmental Science, 299(1), 012066, 2019, https://doi.org/10.1088/1755-1315/299/1/012066

D. Zhang et al., “Transition-Metal-Ion (Fe, Co, Cr, Mn, Etc.) Doping of TiO2 Nanotubes: A General Approach”, Inorganic Chemistry, 58(19), 12511–12515, 2019, https://doi.org/10.1021/acs.inorgchem.9b01889

B. Pava-Gomez, X. Vargas-Ramirez, and C. Diaz-Uribe, “Physicochemical study of adsorption and photodegradation processes of methylene blue on copper-doped TiO2 films”, Journal of Photochemistry and Photobiology A: Chemistry, 360, 13–25, 2018, https://doi.org/10.1016/j.jphotochem.2018.04.022

R. S. Rini, I. Fajriati, and A. A. Kiswandono, “Effect of Hydrogen Peroxide (H2O2) Addition on the Effectiveness of Naphthol Photodegradation Using TiO2 Photocatalysis”, Analytical and Environmental Chemistry, 4(1), 26–40, 2019.

M. I. Prakoso et al., “Photodegradation of Methyl Orange (MO) Using TiO2 /Zeolite from Coal Fly Ash Waste Under Acidic Conditions and H2O2 Addition”, Helium: Journal of Science and Applied Chemistry, 04(01), 2024, https://journal.unpak.ac.id/index.php/he_jsac

A. P. Aziztyana et al., “Optimisation of Methyl Orange Photodegradation Using TiO2-Zeolite Photocatalyst and H2O2 in Acid Condition”, in IOP Conference Series: Materials Science and Engineering, 2019, https://doi.org/10.1088/1757-899x/546/4/042047

F. Buazar, S. Alipouryan, and S. A. Hossieni, “Photodegradation of odorous 2-mercaptobenzoxazole through zinc oxide/hydroxyapatite nanocomposite”, Applied Nanoscience (Switzerland), 5(6), 719–729, 2015, https://doi.org/10.1007/s13204-014-0368-4

K. Allam, A. El Bouari, B. Belhorma, and L. Bih, “Removal of methylene blue from water using hydroxyapatite submitted to microwave irradiation,” Journal of Water Resource and Protection, 8(3), 358–371, 2016, https://doi.org/10.4236/jwarp.2016.83030

A. F. Alkaim et al, “Effect of pH on Adsorption and Photocatalytic Degradation Efficiency of Different Catalysts on Removal of Methylene Blue”, Asian Journal Of Chemistry, 26(24), 8445-8448, 2014,https://doi.org/10.14233/ajchem.2014.17908

A. B. D. Nandiyanto, R. Ragadhita, and J. Yunas, “Adsorption isotherm of densed monoclinic tungsten trioxide nanoparticles”, Sains Malaysiana, 49(12), 2881–2890, 2020, https://doi.org/10.17576/jsm-2020-4912-01

C. Oliveira et al., “Zinc (II) Modified Hydroxyapatites For Tetracycline Removal: Zn (II) Doping or ZnO Deposition and Their Influence in The Adsorption”, Polyhedron, 194, 114879, 2020, https://doi.org/10.1016/j.poly.2020.114879

L. J. Kusumawardani et al., “Optimization And Mechanism Elucidation Of Catalytic Photodegradation Methylene Blue By TiO2/Zeolite Coal Fly Ash Nanocomposite Under H2O2 Presence”, Jurnal Sains Natural, 14, 98–108, 2024, https://doi.org/10.31938/jsn.v

T. A. Kusumawati, A. Setiawan, and D. Dermawan, “Studi Kinetika Adsorpsi Metilen Biru Menggunakan Adsorben Komposit Hidroksiapatit – Karbon Aktif Tongkol Jagung”, Conference Proceding on Waste Treatment Technology, 6(1), 2023.




DOI: https://doi.org/10.15575/ak.v11i2.37886

Copyright (c) 2025 Arie Hardian, AULIA ZAKIYATUN NAFISAH, Teguh Karya, Riyan Halim, Anceu Murniati, Dani Gustaman Syarif, Atiek Rostika Noviyanti

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

CrossrefSINTAGoogle ScholarIndonesia One Search

View My Stats

 

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

slot gacor slot gacor https://lib.pasca.isi.ac.id/ https://opac.animasi.isi.ac.id/animasi/ https://bkd.iainambon.ac.id/storage/ https://sia.itny.ac.id/media/ https://siladikti.hangtuah.ac.id/server/ https://sistendik.hangtuah.ac.id/ https://partisipasisehat.kemkes.go.id/media/ https://partisipasisehat.kemkes.go.id/media/paitohk/ https://regpus.kemkes.go.id/media/ https://spi.unand.ac.id/layanan/ https://hangtuah.ac.id/