Activity of Zn(II)-Curcumin Complex Compound as An Antibacterial Agent Against Staphylococcus Aureus and Escherichia Coli

Authors

  • Imelda Hotmarisi Silalahi Department of Chemistry, Faculty of Mathematics and Natural Sciences, Indonesia http://orcid/org/0000-0002-6456-6850
  • Deby Pascalia Sadenta Department of Chemistry, Faculty of Mathematics and Natural Sciences, Indonesia
  • Puji Ardiningsih Department of Chemistry, Faculty of Mathematics and Natural Sciences, Indonesia
  • Ari Widiyantoro Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Indonesia

DOI:

https://doi.org/10.15575/ak.v12i1.39415

Keywords:

Curcumin, Zn(II)-curcumin complex, antibacterial activity

Abstract

Curcumin has very broad biological activities, but it has low stability. The stability of curcumin can be enhanced by forming complex compounds with metal ions, hoping to preserve its activity. This paper reports the antibacterial activity of zinc(II)-curcumin compared with curcumin alone. Zinc(II)-curcumin complexes have been prepared using ZnCl2 metal precursor in ethanol under reflux conditions with a curcumin:metal molar ratio of 2:1. The reaction, followed by thin-layer chromatography, showed that curcumin had reacted completely with zinc(II) metal ions after 4 hours reaction. The UV-vis spectra of the Zn(II)-Curcumin complex experienced a bathochromic peak shift of 5 nm. The FTIR spectra of the zinc(II)-curcumin complex indicated interactions between the ß-1,3 diketone groups of curcumin and Zn2+ metal ions, manifested by a decrease in absorption band intensity and shift in wave numbers of phenolic -OH and enolic C=O groups. Antibacterial activities of curcumin and zinc(II)-curcumin were evaluated using the disc diffusion method against E.coli and S.aureus bacteria. Curcumin and zinc(II)-curcumin exhibited a moderate antibacterial activity against the bacteria. Inhibition zone diameters against E.coli demonstrated by curcumin and zinc(II)-curcumin at a dose of 100 µg/disc are 6.05 mm  and 5.30 mm, respectively. Meanwhile, at the same dose, curcumin and zinc(II)-curcumin showed inhibition zone diameters against S. aureus in 5.39 mm and 6.09 mm, respectively. The observations demonstrate the preservation of curcumin antibacterial activities although it is introduced with zinc(II) ion.

References

[1] S. J. Hewlings and D. S. Kalman, “Curcumin: A review of its effects on human health,” Foods, 6 (10), 2017, https://doi.org/10.3390/foods6100092

[2] E. Purwaningsih, “Potensi Kurkumin Sebagai Bahan Anti Fertilitas Potential Effect of Curcumin As Anti Fertility Agent,” Jurnal kedokteran yarsi, 24 (3), pp. 203-211, 2016, https://dx.doi.org/10.33476/jky.v24i3.267

[3] M. Urosevic, L. Nikolic, I. Gajic, V. Nikolic, A. Dinic, and V. Miljkovic, “Curcumin: Biological Activities and Modern Pharmaceutical Forms,” Antibiotics, 11 (2), pp. 135-162, 2022, https://doi.org/10.3390/antibiotics11020135

[4] E. Mulatsari, T. Martati, E. Mumpuni, and N. L. Dewi, “In Silico Analysis of Antiviral Activity of Analog Curcumin Compounds,” Jurnal Jamu Indonesia, 5 (3), pp. 114–121, 2020, https://doi.org/10.29244/jji.v5i3.173

[5] A. Alabdali et al., “Antioxidant activity of Curcumin,” Research Journal of Pharmacy and Technology, 14 (12), pp. 6741-6746, 2021, https://doi.org/10.52711/0974-360X.2021.01164

[6] S. Grabner and B. Modec, “Zn(II) Curcuminate Complexes with 2,20-bipyridine and Carboxylates,” Molecules, 24 (14), pp. 2540-2560, 2019, https://doi.org/10.3390/molecules24142540

[7] R. Rabima, R. Riki, and A. Oktamauri, “Karakterisasi & Aktivitas Antibakteri Dari Kurkumin-Nanostructured Lipid Carrier,” Indonesia Natural Research Pharmaceutical Journal, 3 (2), pp. 1-10, 2018, https://doi.org/10.52447/inspj.v3i2.1266.

[8] S. Prasad, D. Dubourdieu, A. Srivastava, P. Kumar, and R. Lall, “Metal–curcumin complexes in therapeutics: An approach to enhance pharmacological effects of curcumin,” International Journal of Molecular Sciences, 22 (13), 2021, https://doi.org/10.3390/ijms22137094

[9] P. Peni et al., “Synthesis of Metal–Curcumin Complex Compounds (M = Na+, Mg2+, Cu2+),” Jurnal Kimia Sains dan Aplikasi, 23 (3), pp. 75-82, 2020, https://doi.org/10.14710/jksa.23.3.75-82

[10] A. Kareem, Laxmi, M. Arshad, S. A. A. Nami, and N. Nishat, “Herbo-mineral based Schiff base ligand and its metal complexes: Synthesis, characterization, catalytic potential and biological applications,” Journal of Photochemistry and Photobiology B: Biology, 160, pp. 163–171, 2016, https://doi.org/10.1016/j.jphotobiol.2016.03.030

[11] S. Wanninger, V. Lorenz, A. Subhan, and F. T. Edelmann, “Metal complexes of curcumin - synthetic strategies, structures and medicinal applications,” Chemical Society Reviews, 44 (15), pp. 4986–5002, 2015, https://doi.org/10.1039/c5cs00088b

[12] A. Sulaiman, I. Hotmarisi Silalahi, A. Shofiyani, A. Widiyantoro, H. Harlia, “Energi Celah-Pita Material TiO2/Kompleks Logam-Klorofil (M= Zn2+ , Co2+) Dari Daun Singkong (Manihot esculenta crant),” Indonesian Journal of Pure and Applied Chemistry, 5 (1), 2022, https://doi.org/10.26418/indonesian.v5i1.49364

[13] N. Lely, S. Yulisa, L. Sirumapea, S. Tinggi, I. Farmasi, and B. P. Palembang, “Sintesis dan Karakterisasi Senyawa Kompleks Zn(II) Sulfametoksazol dan Schiff Base dari Sulfametoksazol dan Vanillin serta Uji Aktivitas Antibakteri Salmonella thypi,” Jurnal Penelitian Sains, 21 (2), pp. 59-65, 2019, https://doi.org/10.56064/jps.v21i2.530

[14] S. Vimalraj, S. Rajalakshmi, S. Saravanan, D. Raj Preeth, R. LA Vasanthi, M. Shairam and S. Chatterjee, “Synthesis and characterization of zinc-silibinin complexes: A potential bioactive compound with angiogenic, and antibacterial activity for bone tissue engineering,” Colloids and Surfaces B: Biointerfaces, 167, pp. 134–143, 2018, https://doi.org/10.1016/j.colsurfb.2018.04.007

[15] T. Q. Hieu and D. T. T. Thao, “Enhancing the Solubility of Curcumin Metal Complexes and Investigating Some of Their Biological Activities,” Journal of Chemistry, 2, 2019, https://doi.org/10.1155/2019/8082195

[16] B. Zheng and D. J. McClements, “Formulation of more efficacious curcumin delivery systems using colloid science: Enhanced solubility, stability, and bioavailability,” Molecules, 25 (12), 2020, https://doi.org/10.3390/molecules25122791

[17] A. Khireddine et al., “Structural, Electronic, Thermodynamic, Optical and Nonlinear Optical Properties of Curcumin Complexes with Transition Metals: DFT and TD-DFT Study,” ChemistrySelect, 7 (14), 2022, https://doi.org/10.1002/slct.202104442

[18] E. H. Al-Thubaiti, “Antibacterial and antioxidant activities of curcumin/Zn metal complex with its chemical characterization and spectroscopic studies,” Heliyon, 9 (6), 2023, https://doi.org/10.1016/j.heliyon.2023.e17468.

[19] W. Novita, “Uji Aktivitas Antibakteri Fraksi Daun Sirih (Piper Betle L) terhadap Pertumbuhan Bakteri Streptococcus Mutans),” Jurnal Kedokteran dan Kesehatan, 4 (2), pp. 140-155, 2016, https://doi.org/10.22437/jmj.v4i2.3579

[20] M. A. Wibowo, D. N. Sari, A. Jayuska, and P. Ardiningsih, “Komposisi Kimia Dan Uji Aktivitas Antibakteri Minyak Atsiri Daun Kayu Putih (Melaleuca cajuputi) Dari Kota Singkawang,” Biopropal Industri, 12 (1), 2021, https://doi.org/10.36974/jbi.v12i1.6509

[21] R. S. Panjaitan and F. Madayanti, “Uji Aktivitas Antibakteri Ekstrak Kasar Lipid Ulva Fasciata terhadap Bacillus cereus” EduChemia (Jurnal Kimia dan Pendidikan), 2 (1), pp. 14-24, 2017. http://dx.doi.org/10.30870/educhemia.v2i1.1295

[22] S. Alda, T. Rompas, D. S. Wewengkang, and D. A. Mpila, “Uji Aktivitas Antibakteri Organisme Laut Tunikata Polycarpa Aurata terhadap Bakteri Escherichia Coli dan Staphylococcus aureus,” Pharmacon, 11 (1), 1271-1278, 2022, https://doi.org/10.35799/pha.11.2022.39137

[23] S. A. Aulia, D. Sutiningsih, H. Setyawan and A. Udiyono, “Keberadaan Residu Tetrasiklin pada Daging Ayam Broiler di Kabupaten Kudus (Studi di Pasar Tradisional dan Pasar Modern Tahun 2019),” Jurnal Epidemiologi Kesehatan Komunitas, 8 (1), pp. 69-75, 2023, https://doi.org/10.14710/jekk.v8i1.6918

[24] A. Purnamaningsih, H. Kalor, and Sri Atun, “Uji Aktivitas Antibakteri Ekstrak Temulawak (Curcuma Xanthorrhiza) Terhadap Bakteri Escherichia Coli ATCC 11229 Dan Staphylococcus Aureus ATCC 25923,” Jurnal Penelitian Saintek, 22 (2), pp. 140-147, 2017, http://dx.doi.org/10.21831/jps.v22i2.17122

[25] I. Marfuah, Dewi, E. N., and Rianingsih, LH., “Kajian Potensi Ekstrak Anggur Laut (Caulerpa Racemosa) Sebagai Antibakteri Terhadap Bakteri Escherichia coli DAN Staphylococcus aureus,” Jurnal Pengolahan dan Bioteknologi Hasil Perikanan, 7 (1), pp. 7-14, 2018, https://ejournal3.undip.ac.id/index.php/jpbhp/article/view/20383

[26] N. Mawaddah, “Aktivitas Antibakteri Ekstrak Tempe Terhadap Bakteri Staphylococcus aureus Antibacterial Activity of Tempe Extracts on Staphylococcus aureus,” Jurnal Ilmiah Mahasiswa Veteriner, 2 (3), pp. 230-241, 2018, https://doi.org/10.21157/jimvet.v2i3.776

[27] F. Dwi Cahyaningtyas and Z. Afifatul Ukrima, “Pemanfatan Ekstrak Biji Teratai Sebagai Bahan Aktif Antibakteri Untuk Pembuatan Hand Sanitizer,” Indonesian Chemistry and Application Journal, 3 (1), pp. 7-13, 2019, https://doi.org/10.26740/icaj.v3n1.p7-13

[28] S. Chatterjee and M. Chaudhary, “Antimicrobial Activity And Cellular Availability Of Zinc Curcuminate : A Review,” High Technology Letters, 28 (12), pp. 889-900, 2023, [online] http://www.gjstx-e.cn/.

Downloads

Published

2025-06-30

How to Cite

Silalahi, I. H., Sadenta, D. P., Ardiningsih, P., & Widiyantoro, A. (2025). Activity of Zn(II)-Curcumin Complex Compound as An Antibacterial Agent Against Staphylococcus Aureus and Escherichia Coli. Al Kimiya: Jurnal Ilmu Kimia Dan Terapan, 12(1), 1–8. https://doi.org/10.15575/ak.v12i1.39415

Issue

Section

Articles

Citation Check

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.