Simulasi Penambatan Molekuler Senyawa Kompleks Besi Terhadap Protein Hemofor sebagai Kandidat Fotosensitizer pada Terapi Fotodinamika


Taufik Muhammad Fakih(1*), Anggi Arumsari(2), Mentari Luthfika Dewi(3), Nurfadillah Hazar(4), Tanisa Maghfira Syarza(5)

(1) Program Studi Farmasi, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Islam Bandung, Indonesia
(2) Program Studi Farmasi, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Islam Bandung, Indonesia
(3) Program Studi Farmasi, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Islam Bandung, Indonesia
(4) Program Studi Farmasi, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Islam Bandung, Indonesia
(5) Program Studi Farmasi, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Islam Bandung, Indonesia
(*) Corresponding Author

Abstract


Resistensi antibiotika muncul sebagai polemik yang dapat mempengaruhi kesehatan manusia. Kemajuan teknologi membuka peluang dalam penemuan molekul senyawa baru yang mampu mencegah perkembangan mikroba patogen, seperti Pseudomonas aeruginosa yang resisten terhadap beberapa jenis antibiotika. Terapi fotodinamika dengan memanfaatkan penggunaan fotosensitizer yang berasal dari senyawa yang membentuk kompleks dengan besi merupakan salah satu pendekatan alternatif untuk mengatasi penyakit infeksi dengan risiko resistensi mikroba yang lebih rendah. Penelitian yang dilakukan secara in silico ini bertujuan untuk mengamati, mengeksplorasi, dan mengevaluasi mekanisme aksi berbasis struktural dari molekul senyawa yang membentuk kompleks dengan besi, yaitu besi-ftalosianina dan besi-salofen terhadap protein hemofor HasAp serta pengaruh molekularnya terhadap bagian situs aktif pengikatan dari protein hemofor HasR. Identifikasi interaksi molekuler dan afinitas antara molekul senyawa besi-ftalosianina dan besi-salofen terhadap protein hemofor HasAp dilakukan dengan simulasi ligan-protein docking mempergunakan software MGLTools 1.5.6 yang dilengkapi dengan AutoDock 4.2. Di samping itu, dilakukan juga simulasi protein-protein docking terhadap sistem kompleks ligan-protein untuk memastikan pengaruh molekularnya terhadap bagian situs aktif pengikatan dari protein hemofor HasR dengan mempergunakan software PatchDock. Berdasarkan simulasi ligan-protein docking diperoleh hasil bahwa senyawa besi-ftalosianina memiliki afinitas paling baik terhadap kedua protein hemofor HasAp, dengan nilai energi bebas pengikatan masing-masing sebesar −68,45 kJ/mol dan −65,23 kJ/mol. Menariknya, hasil simulasi protein-protein docking antara kompleks molekul senyawa besi-ftalosianina dan protein hemofor HasAp-besi-ftalosianina terhadap protein hemofor HasR memiliki nilai energi kontak atom yang positif sebesar 556,56 kJ/mol. Dari penelitian ini dapat diprediksikan bahwa perbedaan struktur molekul senyawa yang membentuk kompleks dengan besi mampu mempengaruhi mekanisme aksi berbasis structural terhadap protein hemofor target.

Keywords


Fotosensitizer; Terapi fotodinamika; Pseudomonas aeruginosa; Protein hemofor; Besi-ftalosianina; Besi-salofen; Studi in silico

Full Text:

PDF

References


E. Tacconelli, E. Carrara, A. Savoldi, S. Harbarth, M. Mendelson, D.L. Monnet, et al., "Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis," The Lancet Infectious Diseases, vol. 18, no. 3, pp. 318-327, 2018.

T.G.S. Denis, and M.R. Hamblin, "An introduction to photoantimicrobials: photodynamic therapy as a novel method of microbial pathogen eradication," Science against Microbial Pathogens: Communicating Current Research and Technological Advances, pp. 675-683, 2011.

A. Staicu, A. Pascu, A. Nuta, A. Sorescu, V. Raditoiu, and M.L. Pascu, "Studies about phthalocyanine photosensitizers to be used in photodynamic therapy," Romanian Reports in Physics, vol. 65, no. 3, pp. 1032-1051, 2013.

S. Letoffe, V. Redeker, and C. Wandersman, "Isolation and characterization of an extracellular haem-binding protein from

Pseudomonas aeruginosa that shares function and sequence similarities with

the Serratia marcescens HasA haemophore," Molecular Microbiology, vol. 28, no. 6, pp. 1223-1224, 1998.

S. Letoffe, J.M. Ghigo, and C. Wandersman, "Iron acquisition from heme and hemoglobin by a Serratia marcescens extracellular protein," Proceedings of the National Academy of Sciences U.S.A., vol. 91, no. 21, pp. 9876-9880, 1994.

S. Letoffe, C. Deniau, N. Wolff, E. Dassa, P. Delepelaire, A. Lecroisey, and C. Wandersman, "Haemophore-mediated bacterial haem transport: evidence for a common or overlapping site for haem-free and haem-loaded haemophore on its specific outer membrane receptor," Molecular Microbiology, vol. 41, no. 2, pp. 439-450, 2001.

S. Krieg, F. Huche, K. Diederichs, N. Izadi-Pruneyre, A. Lecroisey, C. Wandersman, P. Delepelaire, and W. Welte, W, "Heme uptake across the outer membrane as revealed by crystal structures of the receptor-hemophore complex," Proceedings of the National Academy of Sciences U.S.A., vol. 106, no. 4, pp. 1045-1050, 2009.

P. Arnoux, R. Haser, N. Izadi, A. Lecroisey, M. Delepierre, C. Wandersman, and M. Czjek, "The crystal structure of HasA, a hemophore secreted by Serratia marcescens," Nature Structural and Molecular Biology, vol. 6, no. 6, pp. 516-520, 1999.

A.Y. Alontaga, J.C. Rodriguez, E. Schonbrunn, A. Becker, T. Funke, E.T. Yukl, T. Hayashi, J. Stobaugh, P. Moenne-Loccoz, and M. Rivera, "Structural characterization of the hemophore HasAp from Pseudomonas aeruginosa: NMR spectroscopy reveals protein-protein interactions between HoloHasAp and hemoglobin," Biochemistry, vol. 48, no. 1, pp. 96-109, 2009.

C. Shirataki, O. Shoji, M. Terada, S. Ozaki, H. Sugimoto, Y. Shiro, and Y. Watanabe, "Inhibition of heme uptake in Pseudomonas aeruginosa by its hemophore (HasAp) bound to synthetic metal complexes," Angewandte Chemie International Edition, vol. 53, no. 11, pp. 2862-2866, 2014.

F. Kurniawan, Y. Miura, R.E. Kartasasmita, N. Yoshioka, A. Mutalib, and D.H. Tjahjono, "In silico study, synthesis, and cytotoxic activities of porphyrin derivatives," Pharmaceuticals, vol. 11, no. 1, pp. 8, 2018.

M.S. Engler, B. Caron, L. Veen, D.P. Geerke, A.E. Mark, and G.W. Klau, "Automated partial atomic charge assignment for drug-like molecules: a fast knapsack approach," Algorithms for Molecular Biology, vol. 14, no. 1, pp. 1-10, 2019.

S. Forli, R. Huey, M.E. Pique, M. Sanner, D.S. Goodsell, and A.J. Olson, "Computational protein-ligand docking and virtual drug screening with the AutoDock suite," Nature Protocols, vol. 11, no. 5, pp. 905-919, 2016.

S. Geidl, T. Bouchal, T. Racek, R.S. Varekova, V. Hejret, A. Krenek, R. Abagyan, and J. Koca, "High-quality and universal empirical atomic charges for chemoinformatics applications," Journal of Cheminformatics, vol. 7, no. 59, pp. 1-10, 2015.

G.M. Morris, D.S. Goodsell, R.S. Halliday, R. Huey, W.E. Hart, R.K. Belew, and A.J. Olson, "Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function," Journal of Computational Chemistry, vol. 19, no. 14 pp. 1639-1662, 1998.

B. Guan, C. Zhang, and J. Ning, "EDGA: A population evolution direction-guided genetic algorithm for protein–ligand docking," Journal of Computational Biology, vol. 23, no. 7 pp. 585-596, 2016.

R.T. Aruleba, T.A. Adekiya, B.E. Oyinloye, and A. P. Kappo, "Structural studies of predicted ligand binding sites and molecular docking analysis of Slc2a4 as a therapeutic target for the treatment of cancer." International Journal of Molecular Sciences, vol. 19, no. 2, pp. 386, 2018.

J. Zhao, Y. Cao, and L. Zhang, " Exploring the computational methods for protein-ligand binding site prediction." Computational and Structural Biotechnology Journal, vol. 18, no. 2020, pp. 417-426, 2020.

D.S. Prabhu, and V.D. Rajeswari, "In silico docking analysis of bioactive compounds from Chinese medicine Jinqi Jiangtang Tablet (JQJTT) using Patch Dock," Journal of Chemical and Pharmaceutical Research, vol. 5, no. 8, pp. 15-21, 2016.

O.O. Bakare, A.O. Fadaka, M. Keyster, and A. Pretorius, "Structural and molecular docking analytical studies of the predicted ligand binding sites of cadherin-1 in cancer prognostics," Advances and Applications in Bioinformatics and Chemistry, vol. 13, no. 2020, pp. 1-9, 2020.

J.C. Wang, J.H. Lin, C.M. Chen, A.L. Perryman, and A. J. Olson, "Robust scoring functions for protein-ligand interactions with quantum chemical charge models," Journal of Chemical Information and Modeling, vol. 51, no. 10, pp. 2528-2537., 2011.

G. Chen, A.J. Seukep, and M. Guo, "Recent advances in molecular docking for the research and discovery of potential marine drugs," Marine Drugs, vol. 18, no. 11, pp. 545., 2020.

C. Shivanika, D. Kumar, V. Ragunathan, P. Tiwari, A. Sumitha, and P.B. Devi, "Molecular docking, validation, dynamics simulations, and pharmacokinetic prediction of natural compounds against the SARS-CoV-2 main-protease," Journal of Biomolecular Structure and Dynamics, vol. 38, no. 2, pp. 1-28, 2020.

W.P. Feinstein and M. Brylinski, "Calculating an optimal box size for ligand docking and virtual screening against experimental and predicted binding pockets," Journal of Cheminformatics, vol. 7, no. 18, pp. 1-10, 2015.

D. Mondal, J. Florian, and A. Warshel, "Exploring the effectiveness of binding free energy calculations," The Journal of Physical Chemistry, vol. 123, no. 42, pp. 8910-8915, 2019.

Y. Fu, J. Zhao, and Z. Chen, "Insights into the molecular mechanisms of protein-ligand interactions by molecular docking and molecular dynamics simulation: a case of oligopeptide binding protein," Computational and Mathematical Methods in Medicine, vol. 2018, no. 3502514, pp. 1-12, 2018.

S.G. Ramakrishnan, M. Sivaramakrishnan, D. Chenthamara, R. Kothandan, S. Krishnaswami, and S. Subramaniam, "Modelling, docking and simulation analysis of Bisphenol A interaction with laccase from Trichoderma," Bioinformation, vol. 16, no. 4, pp. 323-331, 2020.

A.D. Smith, and A. Wilks, "Differential contributions of the outer membrane receptors PhuR and HasR to heme acquisition in Pseudomonas aeruginosa," Journal of Biological Chemistry, vol. 290, no. 12, pp. 7756-7766, 2015.

D.A.E. Pitaloka, D.S.F. Ramadhan, Arfan, L. Chaidir, and T.M. Fakih, "Docking-based virtual screening and molecular dynamics simulations of quercetin analogs as enoyl-acyl carrier protein reductase (InhA) inhibitors of Mycobacterium tuberculosis," Scientia Pharmaceutica, vol. 89, no. 2, pp. 20, 2021.

S. Hiremath, H.D.V. Kumar, M. Nandan, M. Mantesh, K.S. Shankarappa, V. Venkataravanappa, C.R.J. Basha, and C.N.L. Reddy, "In silico docking analysis revealed the potential of phytochemicals present in Phyllanthus amarus and Andrographis paniculata, used in ayurveda medicine in inhibiting SARS-CoV-2," 3 Biotech, vol. 11, no. 2, pp. 44, 2021.

C. Curutiu, F. Iordache, V. Lazar, A.M. Pisoschi, A. Pop, M.C. Chifiriuc, and A.M. Hoban, "Impact of Pseudomonas aeruginosa quorum sensing signaling molecules on adhesion and inflammatory markers in endothelial cells," Beilstein Journal of Organic Chemistry, vol. 14, pp. 2580-2588, 2018.

W. Ali and N.A. Shar, "Molecular docking analysis of timepidium with acetylcholine and lumacaftor with GABA(A) activator," Bioinformation, vol. 15, no. 11, pp. 832-837, 2019.

F. Darusman, T.M. Fakih, and G.F. Nurfarida, "Identification of the glimepiride and metformin hydrochloride physical interaction in binary systems," Borneo Journal of Pharmacy, vol. 4, no. 2, pp. 110-116, 2021.

M.S. Rossi, J.D. Fetherston, S. Letoffe, E. Carniel, R.D. Perry, and J.M. Ghigo, "Identification and characterization of the hemophore-dependent heme acquisition system of Yersinia pestis," Infection and Immunity, vol. 69, no. 11, pp. 6707-6717, 2021.




DOI: https://doi.org/10.15575/ak.v8i1.8502

Copyright (c) 2021 Taufik Muhammad Fakih, Anggi Arumsari, Mentari Luthfika Dewi, Nurfadillah Hazar, Tanisa Maghfira Syarza

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

CrossrefSINTAGoogle ScholarIndonesia One Search

View My Stats

 

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.