Sentiment Analysis of Microtakaful Industry: Comparison between Indonesia and Malaysia


Aam Slamet Rusydiana(1*), Irman Firmansyah(2), Lina Marlina(3)

(1) Shariah Economic Applied Research and Training (SMART),  
(2) Siliwangi University,  
(3) Siliwangi University,  
(*) Corresponding Author

Abstract


It is important to do research on public sentiment towards microtakaful presence in a country in order to know public response to its existence. This study aimed to determine public sentiment towards microtakaful in Indonesia and in Malaysia. Data were collected from 40 articles, journals and other writings. Data were analyzed using the software Semantria as an analytical tool in the form of text. The results showed that the assessment of existence of microtakaful in Indonesia amounted to 52% of the community showed positive sentiment, 28% indicate negative sentiment and 20% indicates a neutral sentiment. While in Malaysia that 62% showed positive sentiment, 23% negative sentiment and 15% neutral sentiment.


Keywords


Microtakaful; Sentiment; Islamic insurance

Full Text:

PDF

References


Abidin, Z. 2007. “Kinerja Efisiensi Pada Bank Umum.” Proceeding PESAT (Psikologi, Ekonomi, Sastra, Arsitek & Sipil), 2(8): 113-119.

Ascarya, Yumanita, Diana, and Anwar Enny. 2006. Sinergi Sistem Keuangan Konvensional dan Sistem Keuangan Islam. Occasional Paper, Central Education and Banking Study– Bank Indonesia.

Ascarya. 2007. Sistem Keuangan dan Moneter Islam. Central Education and Banking Study - Bank Indonesia. Bank Indonesia.

Barber, I. 2010. Bayesian Opinion Mining.

Biu, L. 2010. Sentiment Analysis: A Multi-Faceted Problem.

Bridge, C. 2011. Unstructured Data and the 80 Percent Rule.

Coussement, K. & Poel, V. D. 2008. Integrating the Voice of Customers through Call Center Emails into a Decision Support System for Churn Prediction.

Dehaff, M. 2010. Sentiment Analysis, Hard But Worth It!.

Faishol, Muh Anas. 2011. “Implementasi Text Mining Untuk Mendukung Pencarian Topik Pada e-library Menggunakan Mobile Device”. Technique Informatika Department. University of Islam Negeri Maulana Malik Ibrahim: Malang.

FSA. 2013. Financial Service Act. Bank Negara Malaysia.

Hussein, Mumtaz, Asghar Shahmoradi, dan Rima Turk. 2015. An Overview of Islamic Finance. International Monetery Fund Working Paper June, 15/120.

Islamic Financial Services Board. 2014. Strenghtening the Financial Safety Net: The Role of Shariah-Compliant Lender-of Last-Resort Facilities as an Emergency Financing Facility. IFSB Working Paper. Kuala Lumpur, Malaysia: IFSB.

Jiawei, H., Kamber, M., & Pei, J. 2012. Data Mining: Concepts and Techniques Third Edition. Waltham, MA: Morgan Kaufmann.

Megawati, Chyntia. 2015. “Analisis Aspirasi dan Pengaduan di Situs LAPOR! Dengan Menggunakan Text Mining”. Faculty of Technique : Universitas Indonesia.

Mihalcea, R. Banea, C. & Wiebe, J. 2007. Learning Multilingual Subjective Language via Cross-Lingual Projections. Proceedings of the Association for Computational Linguistics (ACL). pp. 976–983.

Miner, G., Delen, D., Elder, J., Fast, A., Hill, T., & Nisbet, R. (2012). Practical Text Mining and Statistical Analysis for Non-Structured Text Data Applications. Oxford: Elsevier.

Nurfalah, I., Rusydiana, A.S., Laila, N., and Cahyono, E.F. (2018), “Early warning to banking crises in the dual financial system in Indonesia: The markov switching approach”, JKAU: Islamic Economics, Vol.31, No.2, pp.133-156.

Otoritas Jasa Keuangan. 2013. Laporan Perkembangan Keuangan Syariah 2013.

Pang, B. & Lee, L. 2008. Subjectivity Detection and Opinion Identification. Opinion Mining and Sentiment Analysis. Now Publishers Inc.

Pang, B. & Lee, L. 2004. A Sentimental Education: Sentiment Analysis Using Subjectivity Summarization Based on Minimum Cuts. Proceedings of the Association for Computational Linguistics (ACL). pp. 271–278.

Pang, B. & Lee, L. 2005. Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales. Proceedings of the Association for Computational Linguistics (ACL). pp. 115–124.

Rozi, Imam Fahrur, Sholeh Hadi Pramono dan Erfan Achmad Dahlan. 2012. “Implementasi Opinion Mining (Analisis Sentimen) untuk Ekstraksi Data Opini Publik Pada Perguruan Tinggi” Jurnal EECCIS 6(1).

Rusydiana, A.S., and Devi, A. 2017. “Development strategy of micro-takaful institutions: Case study working group Indonesia”, Etikonomi, Vol.16(2), pp.265-278.

Rusydiana, A.S., and Nugroho, T. 2017. “Measuring efficiency of life insurance institution in Indonesia: Data envelopment analysis approach”, Global Review of Islamic Economics and Business, Vol.5, No.1, pp.12-24.

Saraswati, Ni Wayan Sumartini. 2011. “Text Mining Dengan Metode Naïve Bayes Classifier dan Support Vector Machines Untuk Sentiment Analysis”. Program Pasca Sarjana Universitas Udayana: Denpasar.

Snyder B. & Barzilay R. 2007. Multiple Aspect Ranking using the Good Grief Algorithm. Proceedings of the Joint Human Language Technology/North American Chapter of the ACL Conference (HLT-NAACL). pp. 300–307.

Statsoft. (2015). Text Mining Introductory Overview.

Su, F. & Markert, K. 2008. From Words to Senses: a Case Study in Subjectivity Recognition. Proceedings of Coling 2008, Manchester, UK.

Sunni, Ismail dan Widyantoro, Dwi H. 2012. “Analisis Sentimen dan Ekstraksi Topik Penentu Sentimen Pada Opini Terhadap Tokoh Publik”. Jurnal Sarjana Institut Teknologi Bandung Bidang Teknik Elektro dan Informatika 1(2).

Wulandini, F. & Nugroho, A. N. 2009. Text Classification Using Support Vector Machine for Webmining Based Spation Temporal Analysis of the Spread of Tropical Diseases. International Conference on Rural Information and Communication Technology 2009.




DOI: https://doi.org/10.15575/ijni.v6i1.3004

Refbacks

  • There are currently no refbacks.


Flag Counter

View My Stats

Creative Commons License

International Journal of Nusantara Islam is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License