Keberhasilan dan kompatibilitas penyerbukan sendiri dan silang pada hibridisasi interspesifik ciplukan (Physalis spp)

Zainyah Salmah Arruum, Budi Waluyo


Tanaman ciplukan digunakan untuk menghasilkan buah segar, bahan baku nutraceutical, dan biofarmasi. Kapasitas genetik ciplukan dapat ditingkatkan dengan hibridisasi interspesifik. Ketidakcocokan adalah masalah yang muncul pada persilangan antarspesies. Tujuan penelitian adalah untuk mempelajari keberhasilan dan kompatibilitas penyerbukan sendiri dan penyerbukan silang hibridisasi interspesifik ciplukan. Penelitian dilaksanakan di Seed and Nursery Industry, Agro Techno Park, Universitas Brawijaya pada bulan Januari sampai Juni 2020. Penelitian menggunakan bahan 5 spesies ciplukan, yaitu Physalis P. angulata, P. peruviana, P. pruinosa, P. pubescens, dan P. ixocarpa. Pola perkawinan dialel digunakan serta pengamatan terhadap hasil penyerbukan diamati. Hasil penyerbukan silang interspesifik memiliki derajat kompatibilitas yang berbeda. Kompatibilitas penyerbukan sendiri pada setiap spesies tinggi. Penyerbukan silang interspesifik P. pubescens (PPB-68154-04) x P. angulata (PAN-69281) kompatibel. Inkompatibilitas parsial terdapat pada penyerbukan silang interspesifik P. angulata (PAN-69281) x P. ixocarpa (PIX-4418-2), P. pubescens (PPB-68154-04) x P. ixocarpa (PIX-4418-2) , P. pruinosa (PPN+3101) x P. angulata (PAN-69281), dan P. pruinosa (PPN+3101) x P. ixocarpa (PIX-4418-2). Inkompatibilitas lengkap terjadi pada penyerbukan silang P. angulata (PAN-69281) x P. pubescens (PPB-68154-04), P. angulata (PAN-69281) x P. pruinosa (PPN+3101), P. pubescens (PPB-68154-04) x P. pruinosa (PPN+3101), P. pruinosa (PPN+3101) x P. pubescens (PPB-68154-04), P. pruinosa (PPN+3101) x P. ixocarpa (PIX-4418-2), P. peruviana (PPV-45311-03) dan P. ixocarpa (PIX-4418-2). Penyerbukan sendiri dan penyerbukan silang yang kompatibel menghasilkan perbedaan pada karakteristik buah dan benih. P. pruinosa (PPN+3101), P. angulata (PAN-69281), dan P. pubescens (PPB-68154-04) menghasilkan jumlah benih yang berbeda pada penyerbukan silang interspesifik.


Ciplukan is used as a fresh fruit, nutraceutical raw materials, and biopharmaceuticals. Genetic capacity of ciplukan can be increased by interspecific hybridization. Incompatibility is an issue obtained during the interspecific hybridization. Research objective was to study success rate and compatibility of self-pollination and cross-pollination ciplukan interspecific hybridization. Research was conducted at Seed and Nursery Industry, Agro Techno Park, Universitas Brawijaya from January to June 2020. Physalis P. angulata, P. peruviana, P. pruinosa, P. pubescens, and P. ixocarpa were species included in this study. A diallel mating design pattern was used as well as observations of pollination. Interspecific cross pollination was found to have differing degrees of compatibility. Compatibility of self-pollination in each species is high. Interspecific cross-pollination of P. pubescens (PPB-68154-04) x P. angulata (PAN-69281) is compatible. Partial incompatibilities exist in interspecific cross-pollination of P. angulata (PAN-69281) x P. ixocarpa (PIX-4418-2), P. pubescens (PPB-68154-04) x P. ixocarpa (PIX-4418-2), P. pruinosa (PPN+3101) x P. angulata (PAN-69281), and P. pruinosa (PPN+3101) x P. ixocarpa (PIX-4418-2). Complete incompatibility occurred in cross-pollination of P. angulata (PAN-69281) x P. pubescens (PPB-68154-04), P. angulata (PAN-69281) x P. pruinosa (PPN+3101), P. pubescens (PPB-68154-04) x P. pruinosa (PPN+3101), P. pruinosa (PPN+3101) x P. pubescens (PPB-68154-04), P. pruinosa (PPN+3101) x P. ixocarpa (PIX-4418-2), P. peruviana (PPV-45311-03) and P. ixocarpa (PIX-4418-2). Compatible self-pollination and cross-pollination resulted differences in fruit and seed characteristics. P. pruinosa (PPN+3101), P. angulata (PAN-69281), and P. pubescens (PPB-68154-04) developed different numbers of seeds following interspecific cross-pollination.


ciplukan, inkompatibilitas, persilangan interspesifik, Physalis

Full Text:



Abubakar, M. S., Musa, A. M., Ahmed, A., & Hussaini, I. M. (2007). The perception and practice of traditional medicine in the treatment of cancers and inflammations by the Hausa and Fulani tribes of Northern Nigeria. Journal of Ethnopharmacology, 111(3), 625–629.

Azeez, S. O., & Faluyi, J. O. (2018). Hybridization in four Nigerian Physalis (Linn .) species. Notulae Scientia Biologicae, 10(2), 205–210.

Barone, A., Del Giudice, A., & Ng, N. Q. (1992). Barriers to interspecific hybridization between Vigna unguiculata and Vigna vexillata. Sexual Plant Reproduction, 5(3), 195–200.

Beest, M. te, Berg, R. van den, & Brandenburg, W. (1999). A taxonomic analysis of the species of Physalis L. (Solanaceae) based on morphological characters. In M. Sivadasan & P. Mathew (Eds.), Mentor Book. Biodiversity, taxonomy and conservation of flowering plants, Calicut, Kerala, India, 1998 (pp. 85–97).

Chautá-Mellizo, A., Campbell, S. A., Bonilla, M. A., Thaler, J. S., & Poveda, K. (2012). Effects of natural and artificial pollination on fruit and offspring quality. Basic and Applied Ecology, 13(6), 524–532.

Djakbé, J. D., Ngakou, A., Christian, W., Faïbawe, E., & Tchuenguem, N.-F. F. (2017). Pollination and yield components of Physalis minima (Solanaceae) as affected by the foraging activity of Apis mellifera (Hymenoptera: Apidae) and compost at Dang (Ngaoundéré, Cameroon). International Journal of Agronomy and Agricultural Research, 11(3), 43–60.

Douglas, A. C., & Freyre, R. (2016). Sexual compatibility between eight Nolana L.f. (Solanaceae) species from Peru and Chile. Euphytica, 208(1), 33–46.

Effendy, Respatijarti, & Waluyo, B. (2018). Keragaman genetik dan heritabilitas karakter komponen hasil dan hasil ciplukan (Physalis sp.). Jurnal Agro, 5(1), 30–38.

Figueiredo, M. C. C., Passos, A. R., Hughes, F. M., Santos, K. S. dos, Silva, A. L. da, & Soares, T. L. (2020). Reproductive biology of Physalis angulata L. (Solanaceae). Scientia Horticulturae, 267, 109307.

Frankel, R., & Galun, E. (1977). Pollination Mechanisms, Reproduction and Plant Breeding. Springer-Verlag Berlin Heidelberg.

Ganapathi, A., Sudhakaran, S., & Kulothungan, S. (1991). The diploid taxon in Indian natural populations of Physalis L. and its taxonomic significance. Cytologia., 56(2), 283–288.

Geerts, P., Toussaint, A., Mergeai, G., & Baudoin, J. P. (2002). Study of the early abortion in reciprocal crosses between Phaseolus vulgaris L. and Phaseolus polyanthus Greenm. Biotechnology, Agronomy and Society and Environment, 6(2), 109–119.

Hajjar, R., & Hodgkin, T. (2007). The use of wild relatives in crop improvement: A survey of developments over the last 20 years. Euphytica, 156(1–2), 1–13.

Hawlader, M. S. H., & Mian, M. A. K. (1997). Self-incompatibility studies in local cultivars of radish (Raphanus sativus L.) grown in Bangladesh. Euphytica, 96(3), 311–315.

He, Q.-P., Ma, L., Luo, J.-Y., He, F.-Y., Lou, L.-G., & Hu, L.-H. (2007). Cytotoxic withanolides from Physalis angulata L. Chemistry and Biodiversity, 4(3), 443–449.

Jansky, S. H., & Rouse, D. I. (2003). Multiple disease resistance in interspecific hybrids of potato. Plant Disease, 87, 266–272.

Jovel, E. M., Cabanillas, J., & Towers, G. H. N. (1996). An ethnobotanical study of the traditional medicine of the Mestizo people of Suni Mirano, Loreto, Peru. Journal of Ethnopharmacology, 53(3), 149–156.

Kim, T. K. (2015). T test as a parametric statistic. Korean Journal of Anesthesiology, 68(6), 540.

Lagos B., T. C., Vallejo Cabrera, F. A., Criollo Escobar, H., & Muñoz Flórez, J. E. (2008). Biología reproductiva de la uchuva [sexual reproduction of the cape gooseberry]. Acta Agronómica, 57(2), 81–87.

Lewis, D. (1949). Incompatibility in flowering plants. Biological Reviews, 24(4), 472–496.

Martins, K. C., Pereira, T. N. S., Souza, S. A. M., Rodrigues, R., & do Amaral Junior, A. T. (2015). Crossability and evaluation of incompatibility barriers in crosses between Capsicum species. Crop Breeding and Applied Biotechnology, 15(3), 139–145.

Menzel, M. Y. (1951). The cytotaxonomy and genetics of Physalis. Proc Am Phylos Soc., 95(2), 132–183.

Mirzaee, F., Saeed Hosseini, A., Askian, R., & Azadbakht, M. (2019). Therapeutic activities and phytochemistry of Physalis species based on traditional and modern medicine. Research Journal of Pharmacognosy, 6(4), 79–96.

Muniz, J., Kretzschmar, A. A., Rufato, L., Pelizza, T. R., Rufato, A. D. R., & Macedo, T. A. de. (2014). General aspects of Physalis cultivation. Ciência Rural, 44(6), 964–970.

Olorode, O., Olayanju, S., & Garba, A. (2013). Physalis (Solanaceae) in Nigeria. Ife Journal of Science, 15(1), 101–109.

Peña-Lomelí, A., Magaña-Lira, N., Gámez-Torres, A., Mendoza-

Celino, F., & Pérez-Grajales, M. (2018). Manual pollination in two tomatillo (Physalis ixocarpa Brot. ex Horm.) varieties under greenhouse conditions. Revista Chapingo Serie Horticultura, 24(1), 13–26.

Peña-Lomelí, A., Magaña-Lira, N., Montes-Hernández, S., Sánchez-Martínez, J., Santiaguillo-Hernández, J., Grimaldo

Juárez, O., & Con- treras-Rodríguez, A. (2011). Manual Gráfico para la Descripción Varietal de Tomate de Cáscara (Physalis ixocarpa Brot. ex Horm.). SNICS- SAGARPA, Universidad Autónoma Chapingo.

Pickersgill, B. (1971). Relationships between weedy and cultivated forms in some species of chili peppers (Genus Capsicum). Society for the Study of Evolution, 25(4), 683–691.

Piotto, F. A., Batagin-Piotto, K. D., Almeida, M. de, & Oliveira, G. C. X. (2013). Interspecific xenia and metaxenia in seeds and fruits of tomato. Scientia Agricola, 70(2), 102–107.

Rodrigues, Eliana. (2006). Plants and animals utilized as medicines in the Jaú National Park (JNP), Brazilian Amazon. Phytotherapy Research, 20(5), 378–391.

Rodrigues, Eliseu, Rockenbach, I. I., Cataneo, C., Gonzaga, L. V., Chaves, E. S., & Fett, R. (2009). Minerais e acidos graxos essenciais da fruta exótica Physalis peruviana L. Ciencia e Tecnologia de Alimentos, 29(3), 642–645.

Rukmi, K., & Waluyo, B. (2019). Keragaman genetik aksesi ciplukan (Physalis sp.) berdasarkan karakter morfologi dan agronomi. Jurnal Produksi Tanaman, 7(2), 209–219.

Sadiyah, H., Ashari, S., Waluyo, B., & Soegianto, A. (2021). Genetic diversity and relationship of husk tomato (Physalis spp.) from East Java Province revealed by SSR markers. Biodiversitas Journal of Biological Diversity, 22(1), 184–192.

Sadiyah, H., Soegianto, A., Waluyo, B., & Ashari, S. (2020). Short Communication: Preliminary characterization of groundcherry (Physalis angulata) from East Java Province, Indonesia based on morpho-agronomic traits. Biodiversitas Journal of Biological Diversity, 21(2), 759–769.

Sahagún-castellanos, J. (1999). Heterosis intravarietal en tomate de cáscara ( Physalis ixocarpa Brot .). Revista Chapingo Serie Horticultura, 4(1), 31–37.

Salgado, E. R., & Arana, G. V. (2014). Physalis angulata L. (Bolsa mullaca): a review of its traditional uses, chemistry and pharmacology. Boletin Latinoamericano Caribe Plantas Medicinales Aromaticas, 12(5), 431–445.

Setiawati, T., Kurniawan, A., Supriatun, T., & Karyono. (2016). Persilangan interspesifik Ipomea batatas Lam. dengan I. trifida (H.B.K.) G. Don. berumbi asal Citatah, Jawa Barat. Kebun Raya Bogor LIPI, 19(1), 11–20.

Shandila, P., Zanetta, C. U., & Waluyo, B. (2019). Pengukuran keragaman dan identifikasi aksesi ciplukan (cape gooseberry: Physalis peruviana L.) hasil seleksi galur murni sebagai buah eksotis. Prosiding Seminar Nasional ‘Pembangunan Pertanian Indonesia Dalam Memperkuat Lumbung Pangan, Fundamental Ekonomi, Dan Daya Saing Global’, 1160–1168.

Sharma, N., Bano, A., Dhaliwal, H. S., & Sharma, V. (2015). Perspectives and possibilities of indian species of genus Physalis (L.). European Journal of Pharmaceutical and Medical Research, 2(2), 326–353.

Siemens, J. (2002). Interspecific hybridisation between wild relatives and Brassica napus to introduce new resistance traits into the oilseed rape gene pool. Czech Journal of Genetics and Plant Breeding, 38(3–4), 155–157.

Syukur, M., Sujiprihati, S., & Yunianti, R. (2018). Teknik Pemuliaan Tanaman (edisi revisi). Penebar Swadaya.

Trevisani, N., Schmit, R., Beck, M., Guidolin, A. F., & Coimbra, J. L. M. (2016). Selection of fisális populations for hibridizations, based on fruit traits. Revista Brasileira de Fruticultura, 38(2), e-568.

UPOV. (2005). Guidelines for The Conduct of Tests for Distinctness, Uniformity and Stability: Husk Tomato (Physalis phyladelphica Lam., Physalis ixocarpa Brot., Physalis pruinosa L., and Physalis angulata L.) (Draft). In International union for the protection of new varieties of plants. Guidelines for the Conduct of Tests for Distinctness, Uniformity, and Stability. International union for the protection of new varieties of plants.

Waluyo, B., Zanetta, C. U., & Haesaert, G. (2019). Assessment of variability, heritability and divergence of ciplukan [cutleaf ground cherry: (Physalis angulata L.)] to increase exotic fruit genetic capacity in Indonesia. Proceedings of the Emerging Challenges and Opportunities in Horticulture Supporting Sustainable Development Goals - ISH 2018 (Kuta, Bali, Indonesia 27-30 November 2018), 89–98.

Widyaelina, E., & Waluyo, B. (2019). Seleksi tomatillo (Physalis ixocarpa Brot. ex Hornem) untuk hibridisasi berdasarkan karakter morfologi. Jurnal Pertanian Terpadu, 7(2), 152–165.

Yildiz, G., Izli, N., Unal, H., & Uylaser, V. (2015). Physical and chemical characteristics of goldenberry fruit (Physalis peruviana L.). Journal of Food Science and Technology, 52(4).

Zanetta, C. U., Waluyo, B., & Haesaert, G. (2019). Exploitation of variability and genetic divergence of tomatillo (Physalis ixocarpa Brot) as tool for further breeding. Proceedings of the Emerging Challenges and Opportunities in Horticulture Supporting Sustainable Development Goals - ISH 2018 (Kuta, Bali, Indonesia 27-30 November 2018), 58–65.



  • There are currently no refbacks.

Creative Commons Licence

Jurnal Agro (J. Agro: ISSN 2407-7933) by is licensed under a Creative Commons Attribution 4.0 International License.